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Topological Josephson junctions carry 4π-periodic bound states. A finite bias applied to the
junction limits the lifetime of the bound state by dynamically coupling it to the continuum. Another
characteristic time scale, the phase adjustment time, is determined by the resistance of the circuit
“seen” by the junction. We show that the 4π-periodicity manifests itself by an even-odd effect in
Shapiro steps only if the phase adjustment time is shorter than the lifetime of the bound state. The
presence of a peak in the current noise spectrum at half the Josephson frequency is a more robust
manifestation of the 4π-periodicity, as it persists for an arbitrarily long phase adjustment time. We
specify, in terms of the circuit parameters, the conditions necessary for observing the manifestations
of 4π-periodicity in the noise spectrum and Shapiro steps measurements.

PACS numbers: 71.10.Pm, 74.45.+c, 05.40.Ca, 03.67.Lx

Topological Josephson junctions have attracted much
interest lately as a means of probing the zero-energy Ma-
jorana fermion states that exist at the surface of topolog-
ical superconductors. Such topological superconductors
may be realized via the proximity effect by combining
conventional superconductors with two-dimensional (2D)
topological insulators [1] or with nanowires in the pres-
ence of both strong spin-orbit coupling and a magnetic
field [2, 3]. Recently several experiments have reported
evidence of zero-energy states in nanowire-based systems
[4–6]. To confirm their Majorana nature, additional ex-
perimental signatures are desirable.

In a topological Josephson junction, the Majorana
bound states localized on either side of the junction hy-
bridize and form an Andreev bound state whose energy
ǫA(ϕ) is 4π-periodic in the phase difference ϕ between the
two superconductors. Depending whether the state is oc-
cupied or empty, the energy of the junction is ±ǫA(ϕ)/2.
In the presence of parity-changing processes, the occu-
pation of the state may change. Thus, the equilibrium
Josephson current displays the usual 2π-periodicity as
the system follows the ground state. By contrast, if
upon phase variation the system follows one branch of
the spectrum, then 4π-periodicity should appear indeed.
As a result, under dc bias voltage Vdc, such a system has
been predicted to manifest a fractional ac Josephson ef-
fect [1, 7, 8] at frequency ωJ/2 = eVdc/~, that is at half
of the “usual” Josephson frequency. By the same token,
in the presence of an additional ac bias with frequency
Ω, one would expect an even-odd effect: namely only
the even Shapiro steps at eVdc = kΩ (k ∈ Z) should be
visible in the current-voltage characteristics [8–10]. How-
ever, the application of a bias voltage inevitably couples
the bound state to the continuum, thus causing its occu-
pation to switch. The corresponding switching rate de-
termines the lifetime of the bound state, τs. In addition

to these intrinsic processes, the evolution of the phase
difference across the junction depends on the properties
of the circuit connecting the Josephson junction to the
voltage source. Any non-zero resistance R of the connec-
tion allows for an adjustment of the phase difference over
some characteristic time [11, 12] τR ∝ R−1.
In this work, we evaluate the lifetime of Majorana

bound states, τs, limited by their dynamic coupling to the
continuum. This mechanism gains importance in nearly-
ballistic junctions and leads to a strong dependence of
τs on the applied voltage. We show that the transport
properties of the junction crucially depend on two char-
acteristic time scales, τs and τR. If τs ≫ τR, Majorana
states lead to an even-odd effect in the height of Shapiro
steps, in agreement with Refs. [8–10]. By contrast, if
τs ≪ τR, all Shapiro steps are suppressed. However, sig-
natures of the 4π-periodicity are still visible in the noise
spectrum which, under dc voltage bias, displays peaks at
ω = ±ωJ/2, as was seen in numerical simulations [13].
Here we develop an analytical theory for the noise spec-
trum and find the dependence of the peak widths on τs.
While noise measurements in the GHz-range are not easy
to realize, the low-frequency noise is more accessible. The
down-conversion of the noise peak to ω = ±(ωJ/2 − Ω)
may be achieved by adding a small ac bias of frequency
Ω.
To examine the non-adiabatic transitions between the

Majorana state and quasiparticles continuum, we con-
sider the helical edge state of a 2D topological insulator
in which superconductivity has been induced by two su-
perconducting contacts in order to create a topological
Josephson junction of length L. The system is described
by the Hamiltonian

H = vpσzτz − eU(x, t)τz +M(x)σx +∆(x)eiφ(x,t)τzτx.
(1)

Here, v is the Fermi velocity, p is the momentum opera-
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tor, U(x, t) = V (t)[θ(−x)−θ(x−L)]/2 is the electric po-
tential, M(x) =Mθ(x)θ(L− x) is a transverse magnetic
field within the junction, ∆(x) = ∆[θ(−x)+θ(x−L)] and
φ(x, t) = ϕ(t)[θ(−x) − θ(x − L)]/2, with ϕ̇(t) = 2eV (t),
are the amplitude and phase of the superconducting or-
der parameter in the left and right leads, and σi, τj
(i, j = x, y, z) are Pauli matrices acting in the spin and
particle/hole spaces, respectively. All energies are mea-
sured from the chemical potential.
We concentrate on the case of a short junction, L≪ ξ,

where ξ = v/∆ is the superconducting coherence length.
In equilibrium (V = 0), such a junction hosts a single
Andreev bound state with energy

ǫA(ϕ) =
√
D∆cos(ϕ/2), (2)

where D is the transmission probability of the junction
which depends on its length and on the magnitude of the
transverse field. Thus, the minimal gap δ between the
bound state and the continuum at ϕ = 2nπ (n ∈ Z) is
given as δ = ∆(1 −

√
D). In the following we consider a

highly transmitting junction where δ ≈ ∆R/2 and R =
1−D ∼ (ML/v)2 is the reflection probability.
Out of equilibrium, non-adiabatic transitions between

the Andreev bound state and the continuum are induced.
These transitions change the occupation of the bound
state and thus lead to switching between the two current
branches, I(ϕ) = ±IJ sin(ϕ/2), where IJ = e

√
D∆/2.

At dc bias eVdc ≪ ∆, violation of the adiabaticity oc-
curs in narrow intervals |ϕ − 2πn| ≪ π of the time-
varying phase ϕ = 2eVdct. To find the correspond-
ing probability of a non-adiabatic transition between
the localized Majorana state and continuum, we con-
centrate on the case n = 0, corresponding to the time
interval |t| ≪ π/(eVdc). Using a gauge transforma-
tion H → H̃ = U †HU − iU †U̇ with U = exp[iφτz/2]
and taking the limit L → 0 (keeping R fixed), we ob-
tain for the said interval of ϕ the simplified Hamiltonian
H̃ = vpσzτz + ∆τx + v[(ϕ/2)σz +

√
Rσx]δ(x). Further-

more, at eVdc ≪ ∆, only states close to the continuum
edge, v|p| ≪ ∆, are relevant. Thus, after diagonalizing
the bulk Hamiltonian, we can restrict ourselves to a 2×2
subspace of the initial spin and particle/hole space,

H = ∆+
v2p2

2∆
+ v

(

1

2
ϕσz +

√
Rσx

)

δ(x). (3)

Eq. (3) describes a spin-degenerate continuum with
quadratic dispersion, in the presence of a spin-dependent
local potential. The first term in this potential accounts
for the phase shift across the barrier in a gauge with zero
electric potential in the leads and a vector potential lo-
calized at the barrier. The second term describes the
magnetic barrier.
For a fixed phase, the Hamiltonian (3) accommo-

dates a single bound state with energy ǫA(ϕ) =
∆
(

1− ϕ2/8−R/2
)

, in agreement with Eq. (2) at

R,ϕ2 ≪ 1. A particle occupying this bound state at
time t→ −∞ (within the simplified model) has a proba-
bility s to escape to the continuum as the phase increases.
The problem is, thus, a generalization to a two-band
model of the transition from a discrete state to a contin-
uum, considered by Demkov and Osherov [14]. Dimen-
sional analysis shows that the transition (or switching)
probability is determined by the adiabaticity parameter
λ = R3/2∆/(eVdc). Below we find this probability in two
limiting cases of the parameter λ.
Let us start with the anti-adiabatic regime, λ ≪ 1.

At λ = 0 the spin bands in Eq. (3) are decoupled. At
times t < 0, the bound state belongs to the spin-up band
whereas, at times t > 0, the bound state belongs to the
spin-down band. The spin-up bound state is described by
a wavefunction |ψ↑(t)〉 whose projection on the position
of the local potential is

〈x = 0|ψ↑(t)〉 =
τ√
2πℓ

∫

C

dω eiωt ei(−2ωτ)3/2/3| ↑〉. (4)

The wave function |ψ↓(t)〉 of the spin-down bound state is
related to |ψ↑(t)〉 by time reversal. Here, the characteris-
tic length and time scales are given by ℓ = v/[∆2eVdc]

1/3

and τ = 1/[∆(eVdc)
2]1/3, respectively. Furthermore, C is

a contour in the complex ω-plane [14] that starts and
ends at infinity, with arguments π < θ < 5π/3 and
0 < θ < π/3, respectively, and avoids the branch cut
along the positive real axis. As the spin bands are de-
coupled, a particle occupying the (spin-up) bound state
at t = −∞, has probability 1 − s = 0 to occupy the
(spin-down) bound state as t → ∞.
A finite λ couples the two bands and, thus, enables spin

flips. The switching probability s can be obtained from
the overlap c↓(t) = 〈ψ↓(t)|ψ(t)〉 of the exact wavefunc-
tion, |ψ(t)〉, where |ψ(−∞)〉 = |ψ↑(−∞)〉, with the wave-
function of the spin-down bound state, |ψ↓(t)〉, through
s = 1− |c↓(∞)|2. At λ≪ 1, c↓ can be computed pertur-
batively using

ċ↓(t) ≈ i〈ψ↓(t)|v
√
Rσxδ(x)|ψ↑(t)〉. (5)

Solving the differential equation (5) to obtain c↓(∞) and
computing s, we find s ≈ 1 − 1.05λ2/3. The time scale
over which the transition happens is τt ∼ τ .
In the quasi-adiabatic regime, λ ≫ 1, it is convenient

to expand the exact wavefunction in the adiabatic basis
of Eq. (3),

|ψ(t)〉 = cA(t)|ψA(t)〉+
∑

pσ

cpσ(t)|ψpσ(t)〉. (6)

Here |ψA(t)〉 and |ψpσ(t)〉 are the adiabatic wavefunctions
for the bound state and the doubly degenerate states of
the continuum, respectively. [Note that |ψA(∓∞)〉 =
|ψ↑,↓(∓∞)〉.] The switching probability s is related to
the amplitudes cpσ(∞) of the continuum states in Eq. (6)
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FIG. 1: Switching probability s as a function of the adia-
baticity parameter λ. Dots: s found from a numerical solu-
tion of the Schrödinger equation with Hamiltonian (3). Lines:
asymptotic expressions for s, see text. Squares: s extracted
from the “brute-force”evaluation of the noise spectrum by
solving numerically the problem of multiple Andreev reflec-
tions [13] and fitting the result by Eq. (14), see [16] for details.

through s =
∑

pσ |cpσ(∞)|2, using the initial conditions
cA(−∞) = 1 and cpσ(−∞) = 0. At λ≫ 1, using

ċpσ(t) ≈ iϕ̇(t)
〈ψpσ(t)| ∂H

∂ϕ(t) |ψA(t)〉
ǫpσ − ǫA(t)

e−i
∫

t ds [ǫpσ−ǫA(s)] ,

(7)
the amplitudes cpσ(∞) are expressed through integrals
that may be evaluated by a saddle point method. We
obtain s ≃ 0.93λ−5/4e−2λ/3. Furthermore, we can iden-
tify the time scale over which the transition happens,
τt ∼

√
R/(eVdc).

At arbitrary λ, the switching probability can be
obtained numerically by discretizing Eq. (3) on a
tight-binding lattice and solving the corresponding
Schrödinger equation numerically. The result, together
with the asymptotes obtained above, is shown in Fig. 1.
Using the fact that the transition time τt is much

shorter than the Josephson oscillation period, τt ≪
π/(eVdc), we may now write an effective discrete Markov
model for the bound state dynamics, cf. Fig. 2. Using
a discrete time evolution we assume that if the state is
filled, at phase ϕ2n = 4nπ, there is a probability s of the
particle to escape from the bound state to the continuum,
whereas if the state is empty, at time ϕ2n+1 = (4n+2)π,
there is a probability s of a particle from the continuum
filling the bound state. Thus,

(

P2n+1

Q2n+1

)

=

(

1 s
0 1− s

)(

P2n

Q2n

)

, (8a)

(

P2n

Q2n

)

=

(

1− s 0
s 1

)(

P2n−1

Q2n−1

)

. (8b)

Here Pn is the probability for the state to be occupied,
and Qn = 1 − Pn is the probability for the state to be
empty at phases ϕn < ϕ(t) < ϕn+1, corresponding to
n = Int [ϕ(t)/(2π)]. Solving these equations iteratively,

(a) 5 10 15
jHtL�2Π0

nHtL

(b)
5 10 15

jHtL�2Π

ΕHtL

(c)
5 10 15

jHtL�2Π
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FIG. 2: Schematic view of the switching processes due to the
coupling with the continuum: (a) occupation n of the bound
state, (b) energy ǫ of the system, and (c) Josephson current
I as a function of time t under dc bias voltage Vdc.

we obtain

P2(n+k) = P∞
2n + (1−s)2k (P2n − P∞

2n) , (9a)

P2(n+k)+1 = P∞
2n+1 + (1−s)2k+1 (P2n − P∞

2n). (9b)

The long-time probabilities at k ≫ −1/ ln(1 − s), cor-
responding to t ≫ τs = −2π/[eVdc ln(1 − s)], are 4π-
periodic and independent of the initial state: P∞

n =
[1− (−1)ns/(2− s)]/2.
In order to determine the transport properties of the

junction, the switching time τs has to be compared to
other characteristic time scales of the system. In par-
ticular, if the junction is embedded into a circuit with
a resistance R in series, the phase difference across the
junction may adjust over a typical time scale τR ∝ R−1.
If τs ≫ τR, switching may be neglected (i.e., the

current may be obtained using the initial occupations
P0/Q0). Computing the dc current in the presence of an
applied voltage V (t) = Vdc + Vac cos(Ωt) with Vac ≪ Vdc
then yields the even-odd effect discussed in Refs. [8–10].
Namely, taking into account a finite resistance R, the
average current reads

Idc =
∑

k

δVk
R







1− θ

[

1−
(RIk
δVk

)2
]

√

1−
(RIk
δVk

)2






,

(10)
where Ik = IJ |Jk(α)| is the height of the Shapiro step
at eVdc = kΩ and δVk = Vdc − kΩ/e. Here Jk are the
Bessel functions and α = eVac/Ω. The characteristic

time scale may be identified as [15, 16] τ
(k)
R = 1/(eRIk)

at eVdc ∼ kΩ.
A small resistance satisfying the relation RIJ ≪ Ω is

advantageous for the resolution of Shapiro steps. Fur-
thermore, long switching times require s ≪ 1. In
the small-s regime, the time scale τs decreases as
exp[2R3/2∆/(3kΩ)] with increasing k. On the other
hand, at small ac perturbation, α ≪ 1, the time scale

τ
(k)
R increases exponentially with k. The crossover from
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τs ≫ τR to the opposite limit, τs ≪ τR, upon increasing
Vdc may occur without violation of the condition s ≪ 1.
This restricts the number of observable Shapiro steps in
the current-voltage characteristics, as we show now. At
τs ≪ τR, we may use the long-time probabilities P∞/Q∞

to compute the current and take the limit τR → ∞. At
long times, the average current is 2π-periodic,

〈I(t)〉 = IJ sin
ϕ(t)

2

{

Q∞
Int[ϕ(t)/(2π)] − P∞

Int[ϕ(t)/(2π)]

}

=
sIJ
2− s

∣

∣

∣

∣

sin
ϕ(t)

2

∣

∣

∣

∣

. (11)

More importantly, Eq. (11) shows that the current is pro-
portional to the switching probability s, when s≪ 1.
The result (11) remains valid in the presence of mi-

crowave irradiation as long as Vac ≪ Vdc and Ω ≪ δ. The
first condition ensures that the ac bias only weakly per-
turbs the phase velocity ϕ̇. The second condition ensures
that ionization of the Majorana level by the ac pertur-
bation would require the absorption of a large number of
photons ∼ δ/Ω and, thus, has a small probability. Note
that, for s ≪ 1, the second condition is always satisfied
at Ω ∼ eVdc. Then, s may be approximated by its value
at dc bias only. As a consequence, Eq. (11) implies that
Shapiro steps are strongly suppressed, 〈Ik〉 ∝ s.
In order to reveal signatures of the 4π-periodicity in

the regime τs ≪ τR, we now turn to the current noise
spectrum,

S(ω) = 2

∞
∫

0

dτ cos(ωτ)〈δI(t)δI(t + τ)〉, (12)

where δI = I − 〈I〉 and the bar denotes time-averaging.
It may be obtained from the correlator 〈I(ϕ1)I(ϕ2)〉 =
I2J sin(ϕ1/2) sin(ϕ2/2)[Q

∞
n1
xn2

(Pn1
= 0) − P∞

n1
xn2

(Pn1
=

1)] at ϕ1 < ϕ2, where ni = Int[ϕi/(2π)]. Using the
conditional probabilities obtained from Eqs. (9), we find

〈δI(ϕ1)δI(ϕ2)〉 =
4I2J (1− s)

(2− s)2
sin

ϕ1

2
sin

ϕ2

2
(1− s)n2−n1 .

(13)
At dc bias only, the noise spectral density evaluates to

S(ω) =
4sI2J

π(2 − s)

(eVdc)
3

[ω2−(eVdc)2]2
4 cos2 πω

2eVdc

4 cos2 πω
2eVdc

+ s2

1−s

. (14)

If s≪ 1, it has sharp peaks at ω = ±eVdc, i.e., at half of
the “usual” Josephson frequency:

S(ω) ≃ I2J
2

seVdc/π

(ω ∓ eVdc)2 + (seVdc/π)2
(15)

at |ω ∓ eVdc| ≪ eVdc. In particular, the peak width
is 2seVdc/π. The position of the peak reveals the 4π-
periodicity of the Andreev bound state whereas the in-
verse width characterizes its lifetime τs ∝ s−1. The peak

in the noise is due to the transient 4π-periodic behavior
[17] of the current at times smaller than the lifetime of
the bound state.
Under microwave irradiation, the peak may be shifted

to smaller frequencies. In particular, in the limit Vac ≪
Vdc,Ω/e, we find

S(ω) ≃ I2J
2
J2
k (α)

seVdc/π

[ω ∓ (eVdc−kΩ)]2 + (seVdc/π)2
(16)

at |ω∓ (eVdc−kΩ)| ≪ eVdc. As above, the peak width is
set by the lifetime of the bound state which, thus, may
be probed by noise measurements. Eq. (16) holds for
frequencies ω not too close to zero. In the limit ω →
0, additional features related to the Shapiro steps may
appear [16].
While we considered the helical edge states of 2D

topological insulators, the model is also applicable to
nanowires [2, 3] with strong spin-orbit coupling and a
Zeeman energy much larger than ∆. Note that, in addi-
tion to the non-adiabatic processes that we considered,
non-adiabatic processes in the vicinity of ϕ = (2n+ 1)π
become important if the zero-energy crossing is split due
to the presence of additional Majorana modes at the
ends of the wire [10, 17–19]. In particular, in order
to see signatures associated with the 4π-periodicity, the
probability of Landau-Zener tunneling across the gap at
ϕ = (2n + 1)π would have to be large while the switch-
ing probability due to the coupling with the continuum,
discussed in this work, remains small.
To summarize, we analyzed the electron transport

through a topological Josephson junction imbedded in a
realistic circuit. The Majorana states associated with the
junction may lead to two effects, namely (1) the even-odd
effect in the Shapiro steps, and (2) a peak in the current
noise spectrum at half of the usual Josephson frequency.
We found the conditions for these effects to occur. For
that we identified the characteristic relaxation time scales
for the junction: the lifetime of the bound state originat-
ing in its dynamic coupling to the continuum, and the
phase adjustment time caused by the resistive environ-
ment provided by the circuit. The even-odd effect in the
Shapiro steps requires the phase adjustment time to be
shorter than the lifetime. For longer phase adjustment
times, the even-odd effect is lost. The charactersitic peak
in the noise spectrum is less sensitive to the ratio of the
two relaxation times. In the limit of long phase adjust-
ment time, the width of the peak provides a measure
for the rate of parity-changing processes. The peak at
ω = eVdc/~ should be seen easily if the dc voltage satis-
fies the condition eVdc < R3/2∆, where R is the reflec-
tion probability. The peak position can be down-shifted
in frequency by applying an additional ac bias to the
circuit.
In the final stages of preparing the manuscript, we be-

came aware of Ref. [20] considering related effects in
nanowire-based topological Josephson junctions.
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