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We present a canonical mapping transforming physical boson operators into quadratic products
of cluster composite bosons that preserves matrix elements of operators when a physical constraint
is enforced. We map the 2D lattice Bose-Hubbard Hamiltonian into 2 × 2 composite bosons and
solve it within a generalized Hartree-Bogoliubov approximation. The resulting Mott insulator-
superfluid phase diagram reproduces well Quantum Monte Carlo results. The Higgs boson behavior
in the superfluid phase along the unit density line is unraveled and in remarkable agreement with
experiments. Results for the properties of the ground and excited states are competitive with
other state-of-the-art approaches, but at a fraction of their computational cost. The composite
boson mapping here introduced can be readily applied to frustrated many-body systems where
most methodologies face significant hurdles.
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Introduction.– In the past few years, there has been
great experimental progress on the control and manipu-
lation of cold atomic gases loaded in optical lattices, lead-
ing to quantum simulators of the Bose-Hubbard model
and its Mott insulator to superfluid transition [1]. A
notable recent experiment has revealed the Higgs boson
behavior across this transition in a 2D optical lattice [2].
There is currently great interest in cold atomic physics
for engineering synthetic gauge fields that induce topo-
logical phases and phase transitions. This can be accom-
plished using a combination of laser-induced tunneling
with superlattice techniques [3], or by time-periodic shak-
ing of the lattice [4]. From the theoretical perspective,
traditional mean-field approaches can describe the phase
diagram of bosonic atoms in lattices of various geome-
tries, but only qualitatively [5, 6]. Quantum Monte Carlo
(QMC) yields a highly accurate description of ground
state properties at zero and finite temperatures when-
ever the system has no frustration [7, 8]. Static and dy-
namic properties have also been studied with the Varia-
tional Cluster Approximation (VCA) [9, 10]. Extensions
of static mean-field approaches involving the use of clus-
ters have been considered [11–13]. In this work, we intro-
duce a theory that maps cluster subspaces of the original
Fock space onto composite bosons containing the exact
internal dynamics of the cluster, and whose interactions
account for residual correlations between the clusters.
Because the mapping is canonical, it is then possible to
apply standard many-body techniques to this Compos-
ite Boson (CB) Hamiltonian. In this sense, the method
builds upon previous slave-particle theories, extending
its realm to clusters along the lines of Hierarchical Mean
Field Theory (HMFT) for quantum magnetism [14]. It
could also be considered as an extension to clusters of
the on-site slave-boson mapping of Bose-Hubbard model
proposed in Ref. [15]. These ideas are here generalized
to interacting bosons systems loaded in optical lattices.
We refer to the resulting method as Composite Boson

Mean Field Theory (CBMFT). We demonstrate that the
inclusion of higher order fluctuation terms in the com-
posite mean-field yields very accurate results. The CB
approach to the Bose-Hubbard model unravels the Higgs
boson behavior along the particle-hole (p-h) symmetry
line and yields remarkable agreement with experimental
data [2].

Composite Boson Mapping.– Let us start our deriva-
tion by decomposing the original lattice into a perfect
tiled cluster lattice (superlattice). The cluster states are
represented by CBs labeled by a position R in the super-
lattice and by a set of internal quantum numbers α which
constitute a complete and orthonormal basis in the Fock
space of the cluster. We propose a quadratic mapping
of the boson creation (annihilation) operators a†i (ai) in

terms of these CBs b†Rα (bRα) as

a†i =
∑
αβ

〈Rα|a†i |Rβ〉 b
†
RαbRβ , ai =

(
a†i

)†
, i ∈ R. (1)

Let us now explore the conditions which should be
fulfilled by transformation (1) in order to preserve the

canonical bosonic commutation relations
[
ai, a

†
j

]
= δi,j .

For i, j ∈ R, we insert the transformation in the commu-
tator and obtain

[
ai, a

†
j

]
=
∑
αββ′

(〈Rα| ai |Rβ〉 〈Rβ| a†j |Rβ
′〉

− 〈Rα| a†j |Rβ〉 〈Rβ| ai |Rβ
′〉)b†RαbRβ′ . (2)

The satisfaction of the canonical commutation
relations relies on i) resolution of the identity,∑
β |Rβ〉 〈Rβ| = I, and ii) fulfillment of the physical

constraint,
∑
α b
†
RαbRα = I. The latter condition defines

the physical subspace of the CB Fock space, which has a
one to one correspondence with the original Fock cluster
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space. Alternatively, if i ∈ R and j ∈ R′ the commuta-
tion relation is trivially satisfied due to the commutation
of the CBs, [bRα, b

†
R′β ] = δRR′δαβ.

A direct consequence of the CB mapping is that any
operator ÔR that is an algebraic function of the phys-
ical bosons (ai, a

†
j) within a single cluster at position

R will be mapped to a one-body CB operator, ÔR =∑
αβ 〈Rα|ÔR |Rβ〉 b

†
RαbRβ . This means that the operator

ÔR changes a cluster configuration α into another clus-
ter configuration β. A formal derivation starting from
the mapping (1) in the cluster and using conditions i)
and ii) is given in the Supplemental Material (SM). In
the same way, any product of operators belonging to N
different clusters will be mapped to an N -body operator.
For the sake of simplicity, we will here restrict ourselves
to a density-density interaction that leads to a two-body
CB Hamiltonian, since each density operator is contained
in a single cluster,

H =
∑
ij

[
tija
†
iaj + Vijninj

]
, ni = a†iai. (3)

This class of Hamiltonians, with long-range hopping and
interactions, covers most of the physical lattice boson
models.

We assume a square lattice partitioned into a set of
M clusters, each one at position R of a CB superlattice
and containing L × L sites. Next, we formally map the
Hamiltonian using the prescription described above and
rewrite it in terms of CBs labeled by the occupation con-
figuration of each cluster, n ≡ {n1, . . . , nL, . . . nL2},

HCB =
∑
Rnm

〈Rn|H |Rm〉 b†RnbRm

+
∑
RR′

∑
nn′mm′

〈RnR′n′|H |RmR′m′〉

× b†Rnb
†
R′n′bRmbR′m′ . (4)

For reasons that will become clear below, we will per-
form a generic unitary transformation among the CBs,
b†Rα =

∑
n U

α
Rnb
†
Rn. In this new basis, the hamiltonian

can be written as

HCB =
∑
R

∑
αβ

Tαβ (R) b†RαbRβ (5)

+
∑
RR′

∑
αα′ββ′

Wαα′

ββ′ (R,R′) b†Rαb
†
R′α′bRβbR′β′ ,

where the intra-cluster Tαβ (R) and the inter-cluster

Wαα′

ββ′ (R,R′) matrix elements expressed in the trans-
formed basis encode all the information of the original
Hamiltonian. The CB Hamiltonian (5) is an exact image
of the original boson Hamiltonian provided that the phys-
ical constraint in each cluster,

∑
α b
†
RαbRα = I, is satis-

fied. Furthermore, treating this Hamiltonian by means

of standard many-body techniques, we immediately in-
corporate quantum correlations inside the cluster in an
exact way.
Composite Boson Mean Field Theory.– We here treat

the CB Hamiltonian in the Hartree-Bogoliubov approxi-
mation. In order to proceed further, we have to spec-
ify the matrix elements of the initial lattice Hamilto-
nian. As a first test of CBMFT, we benchmark the Bose-
Hubbard Hamiltonian in a 2D square lattice. Namely,
tij = −tδi,j+e where e is the unit vector in the lattice
directions x, y, and Vij = V δi,j is the on-site Hub-
bard repulsion. In what follows, we omit V and mea-
sure all quantities in units of V . Assuming a uniform
2D lattice with translational symmetry, we first per-
form a Fourier transform of the CB boson operators
b†Rα = (1/

√
M)

∑
k e
−iLk·R b†kα, leading to

HCB =
∑
αβ

Tαβ
∑
k

b†kαbkβ (6)

+
1

M

∑
αα′ββ′

Wαα′

ββ′

∑
k1k2q

γq b
†
k1α

b†k2+qα′bk1+qβbk2β′ ,

where we have introduced γq = cos(Lqx)+cos(Lqy) after

a symmetrization of the two-body matrix elements Wαα′

ββ′

in order to preserve the lattice C4 symmetry. Details on
the calculation of these matrix elements can be found
in the SM. Next, we assume a condensation of the CBs
in the k = 0, α = 0 state by introducing a shift trans-
formation bk=0,α=0 = b†k=0,α=0 = σ

√
M . This trans-

formation manifestly violates the physical constraint as
it induces mixtures with unphysical states. This is a
common problem to all slave-particle theories treated in
mean-field. However, this mixture is expected to be less
severe with increasing cluster sizes, such that in the limit
of very large clusters it must be negligible. Thus, we
relax it and impose a global constraint on the CB den-
sity,

∑
R

∑
α b
†
RαbRα = M . Transforming to momen-

tum space and shifting, this global physical constraint
becomes

σ2 +
1

M

∑
α 6=0

∑
k

b†kαbkα = 1, (7)

where we have neglected the fluctuations of the con-
densed α = 0 CB. Eq. (7) defines σ2 as the CB conden-
sate fraction. Inserting the constraint (7) by means of a
Lagrange multiplier λ in the CB Hamiltonian (6) and ap-
plying a mean-field decoupling, we arrive to a quadratic
Hamiltonian of the form

HMF = H(0) +
∑
k

∑
α6=0,β 6=0

Akαβb
†
kαbkβ (8)

+
∑
k

∑
α 6=0,β 6=0

(
Bkαβb

†
kαb
†
−kβ +Bkαβb−kβbkα

)
.

The specific form of H(0) and the matrices Akαβ and
Bkαβ can be found in the SM.
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The quadratic mean-field Hamiltonian (8) can be di-
agonalized by means of a Bogoliubov transformation,
c†kα =

∑
β Xkβαb

†
kβ −

∑
β Ykβαb−kβ , leading to the Bo-

goliubov eigensystem equation [16](
Ak 2Bk

−2B∗k −A∗k

)(
Xk

Yk

)
= ωk

(
Xk

Yk

)
, (9)

where the positive eigenvalues ωk determine the excita-
tion spectrum. The Bogoliubov equation depends on the
generic transformation U previously defined. Upon mini-
mization of the free energy with respect to the condensed
CB structure U0

m we derive a Hartree like equation for
this transformation. The resulting equation can be cast
in matrix form ∑

n

hm,nU
0
n = λU0

m. (10)

The derivation of the matrix elements of h for L × L
clusters, given in the SM, is straightforward though
lengthy. The Hartree Hamiltonian h depends on the uni-
tary transformation U , on the Bogoliubov amplitudes
Xk, Yk, and on the fraction of the condensate σ2.
Strictly speaking, the self-consistent Hartree diagonaliza-
tion provides a single eigenvector defining the structure
of the condensed CB and the corresponding lowest eigen-
value, which is the Lagrange multiplier λ. However, af-
ter attaining self-consistency the matrix diagonalization
procedure supplies a complete set of eigenstates that are
orthogonal to the condensed CB. It is in this basis or-
thogonal to the condensate where the mean-field Hamil-
tonian (8) is expressed. We seek a self-consistent solu-
tion of the coupled set of equations given by the Hartree
eigensystem (10) which fixes the unitary transformation
U and the Langrange multiplier λ, the Bogoliubov equa-
tions (9) that provide the Bogoliubov amplitudes Xk and
Yk, together with the expectation value of the physical
constraint (7) that determines the CB condensed fraction
σ2.
2D Bose-Hubbard Model Results.– We start with

benchmark calculations based on 2×2 clusters describing
the first Mott lobe characterized by a fixed density per
site ρ = 1. Within this phase, the structure of the uni-
tary transformation U and the CB condensed fraction σ2

are µ-independent. The structure of the condensed CB,
dictated by U0, is a linear combination of cluster states
with |n| = 4. The relevant CB fluctuations are pairs of
particle (|n| = 5) and hole (|n| = 3) cluster states. In ad-
dition, particle- and hole-like excitation eigenvalues have
a linear dependence on the chemical potential for fixed
t. Both excitations cross each other at the p-h symmetry
line, where the gap is doubly degenerate. The edges of
the first Mott lobe are determined by the vanishing of
the gap, indicating the appearance of a Goldstone mode
at k = 0 related to the U(1) symmetry breaking in the
superfluid.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

a  

 

 Q M C
 V C A
 0 t h

 2 n d

 4 t h

 p - h  l i n e

�

t

b

c

M o t t

S u p e r f l u i d

FIG. 1: (color online) Phase diagram of the first lobe of the
Mott-insulator to superfluid transition. The dotted, solid,
and dashed curves show the 2× 2 CBMFT results in increas-
ing order of approximation. The p-h symmetry line traverses
the Mott lobe and extends into the superfluid region at a
constant density ρ = 1. Black circles are QMC results from
Ref. [7]. Squares display VCA results from Ref. [9]. Grey
circles display three points in parameter space for which the
dispersions are analyzed in Fig. 3.

Fig. 1 shows the phase diagram of the Bose-Hubbard
model in three different CB mean-field approximations.
The 0th order approximation neglects fluctuations and
solves the Hartree equations exclusively. The edges of
the Mott lobe are determined in this case by a deviation
from the density ρ = 1. This 0th order approximation is
equivalent to the cluster mean-field calculations of Refs.
[11, 13] producing the same phase diagram (dotted line
in Fig. 1). The 2nd and 4th order approximations go be-
yond previous cluster mean-field approximations incorpo-
rating fluctuations by means of a self-consistent solution
of the Bogoliubov (9) plus Hartree (10) equations linked
by the physical condition (7). The 2nd order approxi-
mation neglects two-body interactions among fluctuat-
ing bosons, while the 4th order solves the three coupled
equations in full. As the approximation order increases,
CBMFT shows clear convergence towards QMC. VCA
results, which were related in Ref. [9] to a linear approx-
imate CB mapping, extend well beyond the QMC Mott
lobe. Also shown in Fig. 1 is the extension of the p-h line
into the superfluid phase characterized by density ρ = 1.

The full self-consistent 4th order approximation does
not describe the gapless feature of the superfluid phase
correctly. Although ways to correct this deficiency have
been suggested [17], in the rest of this paper we will focus
on the 2nd order approximation that strictly preserves the
gapless spectrum when U(1) symmetry is broken.

Fig. 2 shows the total density ρ = 〈φ|a†jaj |φ〉 and the

condensate density ρc = |〈φ|a†j |φ〉|2 for hopping values of
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FIG. 2: (color online). Total density (ρ) and condensate den-
sity (ρc) for t = 0.02 (solid line) and t = 0.04 (dashed line)
within the second order approximation.
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FIG. 3: (color online). Dispersion modes for t = 0.04:
particle- and hole-like excitation modes at (a) the p-h sym-
metry line(µ = 0.419), and (b) inside the Mott insulator
(µ = 0.30), and amplitude- and phase-like modes at (c) in
the superfluid (µ = 0.12).

t = 0.02 and 0.04. The plateau characterizing the Mott
phase is reduced for larger t. Outside this region, the su-
perfluid has non-commensurate density. The condensate
density of physical bosons, representing the coherence of
the superfluid phase, vanishes in the Mott phase. VCA
results for t = 0.02 [9, 10] compare well with our results.

In Fig. 1, we have depicted three characteristic points
at t = 0.04; namely, a is at the p-h line in the Mott phase,
b is still in the Mott phase but away from the p-h line,
and c is in the superfluid phase. Fig. 3 shows particle-
and hole-like excitations for ky = 0 as a function of kx for
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FIG. 4: (color online). Higgs, Goldstone, particle, and hole
modes along the p-h symmetry line computed within 2nd or-
der CBMFT (solid line). Experimental data points from [2].

a and b inside the Mott phase. The degeneracy of the
particle and hole modes for point a approaching k = 0
is clearly seen in this figure. Away from the p-h line
and still in the Mott phase (point b), this degeneracy is
broken and the hole is favored against the particle mode.
Well inside the superfluid phase (point c), we recognize a
gapless mode (Goldstone) with the characteristic linear
dispersion at low momentum, as well as a gapped mode.
An analysis of the CB structure Uαm of each mode, similar
to the one performed in Ref. [11] shows that the gapless
mode is a phase-like mode, while the gapped mode is an
amplitude-like mode.

The phase transition taking place at the lobe tip along
a constant density line (ρ = 1) can be understood in
terms of an O(2) relativistic field theory, as has been
recently discussed in Refs. [2, 18]. Fig. 4 displays how
doubly degenerate excitations along the p-h line inside
the Mott insulator vanish at the critical point. In the
superfluid region, one of them remains at zero excitation
energy (Goldstone) while the other one grows for increas-
ing hopping (Higgs). In both cases, their structure mixes
particle- and hole-like states of the cluster. The CBMFT
results not only match the experimental data [2] remark-
ably well but also gives an excellent description of the
critical point.

Conclusions.– We have introduced a cluster composite
boson mapping which separates intra- and inter-cluster
degrees of freedom. The former are treated exactly while
the latter can be approximated using standard many-
body methods applied to the resulting CB Hamiltonian.
We have here shown that a mean-field approximation to
the CB interaction for the Bose-Hubbard model produces
an accurate description of the Mott-superfluid phase di-
agram compared to QMC results. Densities and disper-
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sions are found in quantitative agreement with more so-
phisticated techniques like VCA. The recently measured
Higgs mode is also computed and found to be in remark-
able agreement with experiment. Further improvement
of the theory beyond the mean-field 2nd order approx-
imation employed in this work is feasible. Most im-
portantly, CBMFT is readily applicable to other many-
body problems where frustration, synthetic gauge fields
or long range interactions pose significant hurdles to ex-
isting state-of-the-art methodologies.
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