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We present highly-accurate energy spectra and eigen functions of small 1d harmonically trapped
two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of
the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms
but no molecules) for positive and negative coupling constants. Changes of the two-body correla-
tions as a function of the interspecies coupling strength reflect the competition of the interspecies
interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a
few-body analog of a transition from a non-magnetic to a magnetic phase. Moreover, we show that
the eigenstate ψadia of the infinitely strongly-interacting system with |n1+n2| > 2 and |n1−n2| < n
(n1 and n2 denote the number of fermions of components 1 and 2, respectively), which is reached
experimentally by adiabatically changing the system parameters, does not, as previously proposed,
coincide with the wave function ψG obtained by applying a generalized Fermi-Fermi mapping func-
tion to the eigen function of the non-interacting single-component Fermi gas.

PACS numbers:

1d systems serve as powerful models whose study pro-
vides insights into fundamental phenomena such as gas
dynamics, electron transport, Cooper pairing and super-
conductivity [1–4]. In the special case where the inter-
actions between the particles are modeled by zero-range
δ-functions, the quantum mechanical problem becomes
integrable. The integrability has many important con-
sequences. For example, 1d systems with δ-function in-
teractions can, if external forces are absent and periodic
boundary conditions are imposed, be solved via the Bethe
ansatz [5]. Another consequence of the integrability is
the fact that a single-component Bose gas with infinitely
strong δ-function interactions behaves like an impenetra-
ble Bose gas, referred to as Tonks-Girardeau gas [6–9].
The corresponding bosonic wave function has similari-
ties with that of a gas of non-interacting (NI) fermions;
in fact, the bosonic wave function can be mapped to the
fermionic wave function via a Bose-Fermi mapping [7, 10–
12]. This Bose-Fermi duality has wide ranging applica-
tions. In studies of lattice Hamiltonian, e.g., it implies
that bosonic creation and annihilation operators can be
mapped to fermionic ones, and vice versa.

Given the success of the Bose-Fermi duality for single-
component Bose and Fermi gases, it is intriguing to
ask whether analogous dualities exist for trapped multi-
component gases with interspecies δ-function interactions
with coupling strength g. This question is not only of
fundamental interest but directly relevant to ongoing cold
atom experiments on effectively 1d two-component Fermi
gases [13, 14]. Indeed, a generalized Fermi-Fermi map-
ping was recently formulated for harmonically trapped
two-component Fermi gases with infinitely large inter-
species δ-function interactions. The generalized Fermi-
Fermi mapping [15] states that an eigenstate ψG of the

trapped two-component Fermi gas with |g| → ∞ can be
obtained, for any n (n = n1 + n2), by applying a map-
ping function MFF to the eigen function ψideal of the
NI harmonically trapped one-component Fermi gas, i.e.,
ψG = MFFψideal. This Letter shows that the states ψG,
constructed according to the generalized Fermi-Fermi
mapping, do in general not agree with the eigenstates
ψadia of the two-component Fermi gas, which emerge
by adiabatically evolving the system Hamiltonian from
the NI to the infinitely strongly-interacting regime. For
n > 2 and |n1−n2| < n, the eigenenergies for states with
a given parity for |g| → ∞ are degenerate [16], thereby
explaining how ψG can be an eigenstate but not coincide
with any of the states that are reached by performing an
adiabatic sweep.

We also calculate the pair correlation functions of the
upper branch of the (n1, n2) = (2, 1), (3, 1) and (2, 2) sys-
tems. The energy of the upper branch, which corresponds
to a metastable repulsive atomic gas, lies above that of
the NI system, and is populated by starting from the NI
regime and turning on repulsive interspecies interactions.
The changes of the structural correlations as the coupling
constant is changed from small and positive, to infinitely
large, to small and negative reflect the competition be-
tween the interspecies interactions and the Pauli pres-
sure introduced by the anti-symmetry requirement of the
wave function under the exchange of identical fermions.
The expectation value of the intraspecies distance coor-
dinate exhibits a maximum at gc. For −1/g . −1/gc,
the interactions are “weaker” than the Pauli exclusion
principle and the expectation value of the intra- and in-
terspecies distances increase with increasing −1/g. For
−1/g & −1/gc, in contrast, the interactions become so
strong that the system prefers to reduce the distance be-
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tween like particles with increasing −1/g. These struc-
tural changes are interpreted as constituting a smooth
few-body analog of the transition from a non-magnetic
to a magnetic phase. The question whether 3d atomic
two-component Fermi gases undergo, if “driven up” the
upper branch, a transition from a paramagnetic to an
itinerant ferromagnetic phase, as described by the Stoner
model [17], has recently been studied extensively exper-
imentally and theoretically for 3d two-component Fermi
gases [18–25].
We consider n 1d fermions with mass m and position

coordinates zj. Assuming interspecies δ-function inter-
actions with coupling strength g, the Hamiltonian reads

H =

n
∑

j=1

(

−~
2

2m

∂2

∂z2j
+

1

2
mω2z2j

)

+

n1
∑

j=1

n
∑

k=n1+1

gδ(zjk),(1)

where ω denotes the angular trapping frequency and
zjk = zj − zk. Throughout, we assume n1 ≥ n2. The
solutions for the (n1, n2) = (1, 1) system are known semi-
analytically for all g [26]. For n > 2, in contrast, the
eigenenergies and eigenstates are, in general, not known
analytically and we resort to a numerical approach. To
solve the time-independent Schrödinger equation for the
Hamiltonian H , we separate the center of mass motion
and expand the Green’s function for the relative coordi-
nates in terms of harmonic oscillator states. For the (2, 1)
system, the approach has been detailed in Ref. [27]. For
the (3, 1) and (2, 2) systems, we generalize the formal-
ism of Refs. [27–31]. Throughout, we assume that the
center of mass wave function is in the ground state and
label the relative eigenstates by the relative parity Πrel

(Πrel = ±1). Our calculations yield highly-accurate en-
ergy spectra and wave functions as a function of g. For
g = 0, the ground state of the (2, 1) has Πrel = −1, that
of the (3, 1) system has Πrel = −1, and that of the (2, 2)
system has Πrel = +1; in the following, we restrict our-
selves to these subspaces.
Figure 1 shows the relative eigenenergies of the (2, 1),

(3, 1) and (2, 2) systems as a function of −Ehoaho/g,
where Eho and aho denote respectively the harmonic
oscillator energy and length, Eho = ~ω and aho =
√

~/(mω). For g → 0+ (far left of the graphs), the
eigenenergies approach the NI limit. As g increases, the
eigenenergies increase, reflecting the repulsive character
of the δ-function interactions. In this work, we are pri-
marily interested in the upper branches shown by thick
solid lines in Fig. 1 [31]. For 1/|g| = 0, the relative en-
ergy of the upper branch is expected, assuming that some
kind of generalized fermionization takes place, to equal
(n2−1)Eho/2. Our numerical energies agree with this ex-
pectation to better than 0.0001%, 0.005% and 0.02% for
the (2, 1), (3, 1) and (2, 2) systems, respectively [32]. For
negative g, the spectrum changes notably. In this regime,
the upper branch corresponds to a highly excited state
of the model Hamiltonian. In addition to states whose

-5 0 5
-a

ho
E

ho
/g

5

10

E
2,

2 

re
l  / 

E
ho

5

10

E
3,

1 

re
l  

/ E
ho

2

6

E
2,

1 re
l  / 

E
ho

(c)

(b)

(a)

FIG. 1: (Color online) Relative energies for the (a) (2, 1) sys-
tem with Πrel = −1, (b) (3, 1) system with Πrel = −1, and
(c) (2, 2) system with Πrel = +1 as a function of −1/g. The
dashed lines show the eigenenergies corresponding to states
that are not affected by the interspecies interactions. The
thick solid lines show the upper branch.

energies change fairly gradually with −1/g, there exists
a set of “diving states”, reflecting the fact that the 1d δ-
function potential with negative g supports a two-body
bound state. The fact that the two-body binding energy
goes to −∞ for g → −∞ leads to the accumulation of
diving states in Fig. 1 for small positive −ahoEho/g. For
positive g, the upper branch was mapped out in Ref. [34].
For negative g, the upper branch has been mapped out
for the (2, 1) system [35] but not n > 3.
We now discuss the (2, 1) eigenstate of the upper

branch with 1/|g| = 0. The energy of the upper branch
of the (2, 1) system with 1/|g| = 0 is degenerate with the
energy of a state that is not affected by the δ-function in-
teractions [see lowest dashed line in Fig. 1(a)]. The two

degenerate eigenstates ψ
|g|=∞
adia,1 and ψ

|g|=∞
adia,2 [correspond-

ing to the solid and lowest dashed lines in Fig. 1(a)] are,
including the center-of-mass contribution, given by [33]

ψ
|g|=∞
adia,1 =

a
−9/2
ho

2
√
3π3/4

z12(z13z23 − 3|z13||z23|)f(z1, z2, z3)(2)

with f(z1, · · · , zn) = e−
∑n

j=1
z2

j /(2a
2

ho
) and ψ

|g|=∞
adia,2 =
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ψideal,0(z1, z2, z3), where

ψideal,0(z1, z2, z3) =

√
2a

−9/2
ho√

3π3/4
z12z13z23f(z1, z2, z3). (3)

Since the eigenstate ψ
|g|=∞
adia,1 changes smoothly when the

system Hamiltonian is changed adiabatially (ψ
|g|=∞
adia,2 is

unchanged), we refer to these states as “adiabatic eigen-
states”. According to the generalized Fermi-Fermi map-

ping [15], ψ
|g|=∞
adia,1 should coincide with the state ψG,0,

which is obtained by applying the spin-dependent map-
ping function MFF (σj =↑ for j = 1, · · · , n1 and σj =↓
for j = n1 + 1, · · · , n) [15],

MFF =
∏

1≤j<k≤n

[(δσj↑δσk↓ − δσk↓δσj↑)sgn(zjk)

+δσj↑δσk↑ + δσj↓δσk↓], (4)

to the energetically lowest lying eigenstate ψideal,0 of the
trapped NI single-component Fermi gas. We find, how-
ever, that this is not the case. Instead, we find that

ψG,0 has non-unit overlap with ψ
|g|=∞
adia,1 and ψ

|g|=∞
adia,2 , i.e.,

|〈ψ|g|=∞
adia,j |ψG,0〉|2 = 8/9 and 1/9 for j = 1 and 2, respec-

tively.

The (3, 1) and (2, 2) systems with 1/|g| = 0 support
respectively two and four degenerate states with Erel =
15Eho/2. For the (3, 1) system, both states are affected
by the δ-function interactions. For the (2, 2) system,
three of the four states are affected by the δ-function in-

teractions. We find |〈ψ|g|=∞
adia,1 |ψG,0〉|2 = 4/5 and 0.865(7)

for the (3, 1) and (2, 2) systems, respectively [33]. This
indicates that ψG,0 is, for n > 2 and n1−n2 > 0, a linear

combination of the ψ
|g|=∞
adia,j (j = 1, 2, · · · ). Thus, starting

in the energetically lowest lying eigenstate of the NI sys-
tem, an adiabatic sweep from g = 0+ to g → ∞ does not
only lead to population of the “fermionized state” ψG,0

but also to population of one or more additional states
that are orthogonal to ψG,0.

Figures 2(a) and 2(b) show contour plots of the wave

functions ψ
|g|=∞
adia,1 and ψG,0, respectively, for the (2, 1)

system with 1/|g| = 0 as functions of the up-up dis-
tance coordinate z12 and the Jacobi coordinate z12,3,
z12,3 = (z13 + z23)/

√
3. The most striking feature is that

ψG,0 appears to have a higher “symmetry” than ψ
|g|=∞
adia,1 .

This is highlighted in the eigen function cuts shown in
Fig. 2(c). The absolute value of the slope of the wave
function ψG,0 near the nodes at z12 = ±

√
3aho, corre-

sponding to z13 = 0 and z23 = 0, is the same to the
left and right of the node [see solid line in Fig. 2(c)].
Mapping ψG,0 so that it is anti-symmetric with respect
to z13 = 0 and z23 = 0 and describing the interspecies
interactions through δ′-functions in first-order perturba-
tion theory, we find E/Eho ≈ 9/2+cEhoaho/(g

√
2π) with

c = 9. From our numerical results, in contrast, we extract

-4 -2 0 2 4
z

12
/a

ho

-0.2

0.2

0

ψ
re

l (
z 12

,3
 =

 a
ho

)

-4

-2

0

2

4

z 12
,3

 / 
a ho

-4

-2

0

2

4

z 12
,3

 / 
a ho

(c)

(b)

(a)

FIG. 2: (Color online) Relative wave function of the (2, 1)
system with 1/|g| = 0 and Πrel = −1. Contour plots of (a)

ψ
|g|=∞
adia,1 and (b) ψG,0 as functions of z12 and z12,3. Nodal lines

are shown by solid lines. The dashed and dotted contours
indicate positive and negative wave function regions; the con-
tours are spaced equidistant. (c) Dotted and solid lines show

cuts of ψ
|g|=∞
adia,1 and ψG,0 as a function of z12 for z12,3 = aho.

The thin dashed vertical lines at z12 = ±
√
3aho are shown as

a guide to the eye.

c = 81/8. This discrepancy highlights that the general-
ized Fermi-Fermi mapping cannot, in general, be utilized
within a perturbative framework. Figure 2(c) shows that
the wave function ψadia,0 is neither symmetric nor anti-
symmetric in the vicinity of z13 = 0 and z23 = 0. This
reflects the fact that the interspecies degrees of freedom
of the two-component Fermi gas with n > 2 are not con-
strained by symmetry.

Next, we discuss the correlations of the upper branch
of the (2, 1), (3, 1) and (2, 2) systems. Figure 3 shows
the expectation values 〈|z12|〉 and 〈|z1n|〉 as a function
of −1/g. The expectation value 〈|z1n|〉 of the up-down
distance coordinate increases monotonically with increas-
ing −1/g for all three systems considered. The expecta-
tion value 〈|z12|〉 of the up-up distance coordinate, in
contrast, first increases monotonically with increasing
−1/g, reaches a maximum at gc (gc < 0) and then de-
creases monotonically. The “critical” coupling strengths
are −ahoEho/gc ≈ 0.3, 0.35 and 0.6 for the (2, 1), (3, 1)
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FIG. 3: (Color online) Expectation values 〈|zjk|〉 for the up-up
(solid lines) and up-down distance coordinate (dotted lines)
as a function of −1/g for the upper branches of the (a) (2, 1),
(b) (3, 1), and (c) (2, 2) systems.

and (2, 2) systems, respectively.

The energy of the upper branch increases monotoni-
cally with increasing −1/g, suggesting that the effective

interspecies interactions for the upper branch are repul-
sive for all g (g positive and negative) and increase with
increasing −1/g. In a naive picture, this suggests that
the system expands with increasing −1/g. Indeed, this is
the case for −1/g . −1/gc, as indicated by the fact that
〈|z12|〉 and 〈|z1n|〉 increase monotonically in this regime
with increasing −1/g. However, 〈|z12|〉 turns around at
gc, indicating that the system favors smaller distances
between like particles. For −1/g & −1/gc, the inter-
species interactions are so strong that they are more
important than the effective repulsion due to the Pauli
pressure. An analogous energy competition drives, ac-
cording to the Stoner model [17], the transition from a
paramagnetic phase to an itinerant ferromagnetic phase
at a critical interaction strength. The metastable up-
per branch has been populated experimentally for small
highly-elongated two-component Fermi gases [14]. These
experiments suggest that decay to lower lying molecu-

lar states is negligibly small even for negative coupling
constants g, thereby opening the possibility to study the
correlations discussed above experimentally.
In summary, we have solved the Schrödinger equation

for harmonically confined two-component Fermi gases in
one dimension as a function of the strength of the in-
terspecies δ-function interaction. Highly accurate en-
ergy spectra were obtained for the (2, 1), (3, 1) and (2, 2)
systems with positive and negative interspecies coupling
constant. The strict 1d spectra agree to about 1% or
better with those of quasi-1d atomic Fermi gases with
aspect ratio 10 or higher [27, 36], which are currently
being investigated by means of radiofrequency and tun-
neling spectroscopy in Jochim’s cold atom laboratory in
Heidelberg [13, 14]. We reported on two characteristics of
the upper branch: (i) Although the energy of the upper
branch coincides with that of a fully fermionized system
for infinitely large coupling constant g, the corresponding
eigenstate populated by adiabatically changing the sys-
tem Hamiltonian does not coincide with that obtained by
applying the generalized Fermi-Fermi mapping proposed
in Ref. [15]. The underlying rationale is that the states of
the upper branch for n > 2 and n1−n2 ≥ 1 are more than
one-fold degenerate and that the wave function between
unlike fermions is not constrained by symmetry consid-
erations [37]. (ii) We calculated the pair-correlations of
the upper branch and found that the expectation value
〈|z12|〉 associated with the intraspecies distance coordi-
nate exhibits a maximum for negative g. This, combined
with the fact that the expectation value 〈|z1n|〉 associ-
ated with the interspecies distance coordinate increases
monotonically with increasing −1/g, indicates an intri-
cate interplay between the interspecies interactions and
the Pauli exclusion principle, similar to the energy com-
petition of the Stoner model that describes the transition
from paramagnetic to ferromagnetic behavior.
Note: After submission of this paper for publication,

three related manuscripts appeared on the arXiv [38–40].
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