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Abstract

The 1978 experiments by Jones and Leslie showing that the radiation pressure on a mirror

depends on the background medium refractive index have yet to be adequately explained using a

force model and have provided a leading challenge to the Abraham form of the electromagnetic

momentum. Those experimental results are predicted for the first time using a force representation

that incorporates the Abraham momentum by utilizing the power calibration method employed

in the Jones and Leslie experiments. Extending the same procedure, the polarization and angle

independence of the experimental data is also explained by this model. Prospects are good for this

general form of the electromagnetic force density to be effective in predicting other experiments

with macroscopic materials. Furthermore, the rigorous representation of material dispersion makes

the representation important for metamaterials that operate in the vicinity of homogenized material

resonances.

PACS numbers: 78.20.-e; 78.70.-g; 45.20.da
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Radiation pressure is related to a change in momentum (between incident and emitted

photons), and it was first measured for a silver mirror more than one century ago [1].

There has been substantial attention given to models (see, for example, [2–7]), but some

important issues remain. A key dilemma has been the determination of a satisfactory model,

or perhaps more explicitly, the correct interpretation of an existing model, to explain the

measured dependence of the force on the background refractive index in experiments by

Jones and Leslie [8], which follow earlier work by Jones and Richards [9].

Explaining the Jones and Leslie experiments [8] has become tantamount to resolving

whether to use the Abraham [10, 11] or Minkowski [12, 13] momentum forms. Jones [14]

presents a nice historical summary of various contributions, making the point that prediction

of force experiments is the requirement of any theory. Thus far, there has not been an

adequate explanation for the Jones and Leslie experiments, beyond the apparent consistency

with the canonical momentum [15].

Associating the Abraham form of the electromagnetic momentum (E×H/c2, with c the

speed of light in vacuum) with the electromagnetic energy in nondispersive media yields the

single photon momentum magnitude of ~k0/n, where n is refractive index, ~ = h/2π, with

h being Planck’s constant, and k0 is the free space wave number. Doing likewise with the

Minkowski momentum (D×B) gives a momentum of n~k0. Atoms have been measured to

have a recoil momentum of n~k0 [16], important in atom interferometry with optical gratings

and consistent with the deBroglie momentum.

A key point in the assignment of an electromagnetic momentum is the coupling of various

physical systems and the fact that conservation principles apply to the superposition of these.

This has been treated nicely with a virtual power concept [2], which provides basic insight

into the separation of mechanical and electromagnetic effects [4]. The delineation into a

quantum mechanical canonical momentum that produces spatial translations [17] and kinetic

momenta associated with Abraham or Minkowski have been proposed [15, 18]. However, it

has been noted that only the (dispersionless) canonical momentum of the photon appears

to explain the Jones and Leslie experiments [15]. Of general significance, the influence of

dispersion must be incorporated to determine the momentum imparted [19]. At this point,

the Jones and Leslie radiation pressure experiments [8] remain unexplained, except for the

qualitative similarity to the photon momentum. More generally, there remain basic questions

about how to describe electromagnetic forces in dispersive materials, or more specifically,
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whether current descriptions can explain experiments.

General expressions for the electromagnetic force are developed in this Letter that can

be applied to inhomogeneous, anisotropic and dispersive media. It is shown that an inter-

pretation of the resulting force expression that incorporates the Abraham momentum can

explain the dependence of the radiation pressure on refractive index in the experiments of

Jones and Leslie [8]. This picture is expanded to describe why Jones and Leslie concluded

from their experiments that there was no dependence of the force on polarization or angle

of incidence [8]. While it has been noted that the Abraham momentum fails to predict the

Jones and Leslie results [15], the analysis here shows that the Abraham momentum incor-

porated into a general force expression explains these experiments. Importantly, this model

could be used to predict other force results, whereas the observation that the near-normal

incidence results from Jones and Leslie are consistent with the incident photons carrying a

canonical momentum of n~k0 [15], while appealing, cannot directly be applied to determine

electromagnetic forces. Likewise, the separation of the photon momentum into canonical

(identified as Abraham) and kinetic (identified as Minkowski) momenta [18] does not provide

a description for force. Other work has investigated issues surrounding the Jones and Leslie

experiments, including the force on a perfect conductor in a background medium [20], and

that on other materials as being due to the impedance mismatch [21, 22]. This leads to the

primary contribution of this Letter, the explanation of all experimental results obtained by

Jones and Leslie for the first time and using a rigorous and general force model stemming

from Maxwell’s equations with homogenized material parameters.

The Jones and Leslie [8] experiments had various improvements over earlier work by Jones

and Richards [9]. The more recent experiments were designed to use a laser (632.8 nm) and

explore the dependence of the radiation pressure on a mirror on the background dielectric

material in a precise way. The ratio of the force on the mirror in the dielectric to that with

the mirror in air was measured for carefully selected liquid dielectrics that had distinct phase

and group velocities. The measured data were calibrated to compensate for various lossless.

All results suggested that pressure is proportional to the background refractive index (the

phase velocity ratio) and that it is independent of polarization.

A significant body of literature supports the use of the Abraham form of the momentum

(see [2, 23], for example). While Abraham did not consider the frequency dependence of

the material properties and in fact asked the question as to the impact [10], Einstein and
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Laub [24], Penfield and Haus [2] and others [22, 25–29] have done so. The development of

the non-relativistic form of the force density based on the Abraham momentum is presented

here because this forms a basis for the description of the Jones and Leslie results.

Maxwell’s equations with all source terms on the right-hand side can be written

∇×E+ µ0

∂H

∂t
= −µ0

∂M

∂t
(1a)

∇×H− ǫ0
∂E

∂t
=

∂P

∂t
+ J (1b)

ǫ0∇ · E = −∇ ·P+ ρ (1c)

∇ ·H = −∇ ·M, (1d)

with E the electric field, H the magnetic field, P the polarization, M the magnetization,

J the source electric current density, ρ the free electric charge density, µ0 the permeability

of free space, and ǫ0 the permittivity of free space. Note that material dispersion and

loss is incorporated into the polarization and magnetization through the frequency domain

representation for these quantities. Taking the cross product of ǫ0E with (1a) and µ0H with

(1b), and adding the resulting equations, gives

ǫ0E× (∇×E) + µ0H× (∇×H) + µ0ǫ0E× ∂H

∂t
− µ0ǫ0H× ∂E

∂t

= −µ0ǫ0E× ∂M

∂t
+ µ0H× ∂P

∂t
+ µ0H× J. (2)

The momentum-flow tensor of the electromagnetic field, the Maxwell stress tensor, is [2]

Te =
1

2

(

ǫ0E
2 + µ0H

2
)

I− ǫ0EE− µ0HH. (3)

The triple cross product terms in (2) can therefore be expressed as

ǫ0E× (∇×E) + µ0H× (∇×H) = ∇ ·Te + ǫ0 (∇ · E)E+ µ0 (∇ ·H)H. (4)

Taking the Abraham form of the momentum density associated with the electromagnetic

field [2],

Ge = µ0ǫ0E×H, (5)

leads to

∂Ge

∂t
= µ0ǫ0E× ∂H

∂t
− µ0ǫ0H× ∂E

∂t
. (6)
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Using (4) and (6), (2) can re-written as

∇ ·Te + ǫ0 (∇ ·E)E+ µ0 (∇ ·H)H+
∂Ge

∂t
= −µ0ǫ0E× ∂M

∂t
+ µ0H× ∂P

∂t
+ µ0H× J.(7)

The kinetic force density due to the electromagnetic fields, or the conservation of momentum

(density), can now be written in terms of Te and Ge as

f = −fe = −∇ ·Te −
∂Ge

∂t

= µ0ǫ0E× ∂M

∂t
− µ0H× ∂P

∂t
+ ǫ0 (∇ · E)E+ µ0 (∇ ·H)H− µ0H× J. (8)

In an open system, partner polarization and magnetization charges outside the (differ-

ential) volume would produce additional forces [2]. Substituting ǫ0 (∇ · E) and ∇ ·H from

(1c) and (1d) into (8), using

− (∇ ·P)E = −∇ · (PE) + (P · ∇)E (9)

− (∇ ·M)H = −∇ · (MH) + (M · ∇)H, (10)

and identifying Tp = −PE and Gp = 0 for polarization and Tm = −µ0MH and Gm = 0

for magnetization leads to a kinetic force density

f = − (fe + fp + fm)

=
∂P

∂t
× µ0H− ∂µ0M

∂t
× ǫ0E

+ ρE− µ0H× J+ (P · ∇)E+ µ0 (M · ∇)H. (11)

The force density in (11) is due to Einstein and Laub [24], and has been used by others

[2, 22, 25–29], and the relativistic form has been derived [2]. The three coupled systems

in (11), each with a stress tensor, result in an net stress tensor given by Te + Tp + Tm.

Note that arbitrary material dispersion can be incorporated through the time derivatives

of P and M in (8) and (11). For plane waves in locally homogeneous isotropic media and

referring to (8), ∇ · E = 0 and ∇ ·H = 0. However, for general material arrangements and

beam profiles, (P · ∇)E and (M · ∇)H in (11) can be nonzero. In the discussion here for

the dielectric case, (P · ∇)E at the surface or within the liquid is assumed not to contribute

to the force on the mirror in the Jones and Leslie experiments [8], in which case from (8) or

(11),

f =
∂P

∂t
× µ0H− ∂µ0M

∂t
× ǫ0E− µ0H× J, (12)
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with SI units of Nm−3. Equation (12) is used to explain the Jones and Leslie experiments.

A single plane wave representation is considered with illumination of a perfect mirror at

angle θi in a background (liquid) medium of refractive index n =
√
ǫl, with ǫl the dielectric

constant, as in the Jones and Leslie experiments [8]. The laser coherence is assumed to be

sufficiently high so as to allow a monochromatic picture. Consider then time harmonic fields

and the incident wave vector as k = kxx̂ + kz ẑ = kl k̂, so cos θi = kz/kl. The multilayer

dielectric stack mirror used by Jones and Leslie is modeled as a perfect electric conductor

(PEC). Doing so assumes that the light is totally reflected and the specific structure of

the fields near to the surface of this one-dimensional photonic crystal can be neglected. In

another view, the problem is treated by a Huygen’s equivalent electric current source existing

on the z = 0 surface. From (12), this results in a time-averaged force density directly applied

to the mirror of

〈fj〉 = −µ0

2
ℜ (H× J∗) , (13)

where ℜ is the real part, and H and J are phasor frequency domain quantities that are

distinguished from the temporal form by context. The mirror surface is assumed to have

global coordinates such that the normal into the incident field space is −ẑ and the mirror

surface is at z = 0. From the boundary condition on the tangential magnetic field applied

in (13), the pressure on the mirror (Nm−2) is

〈Fj〉 = −µ0

2
ℜ (Hz=0 × J∗

s)

=
µ0

2
ℜ [Hz=0 × (ẑ ×H∗

z=0
)] , (14)

where Js A/m is the surface electric current density.

For a TE plane wave (Ey, Hx, Hz) in the temporal frequency domain,

E = ŷE0e
ikxx

(

eikzz + Γee
−ikzz

)

(15)

H = −x̂
E0

Zz

eikxx
(

eikzz − Γee
−ikzz

)

+ ẑ
E0

Zx

eikxx
(

eikzz + Γee
−ikzz

)

, (16)

with Γe = −1 for a PEC mirror and TE impedances Zz = ωµ0/kz and Zx = ωµ0/kx. For

TM polarization (Hy, Ex, Ez),

H = ŷH0e
ikxx

(

eikzz + Γhe
−ikzz

)

(17)

E = x̂H0Zze
ikxx

(

eikzz − Γhe
−ikzz

)

− ẑH0Zxe
ikxx

(

eikzz + Γhe
−ikzz

)

, (18)
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with Γh = 1 for a PEC mirror and TM impedances Zz = kz/(ωǫ0ǫ) and Zx = kx/(ωǫ0ǫ).

Considering monochromatic waves, the time domain fields corresponding to (15) - (18)

are defined by E(x, z, t) = ℜ [E(x, z, ω) exp(−iωt)], with ω the Fourier conjugate variable

associated with t and for the electric field.y

For the TE case, substituting (16) with Γe = −1 and z = 0 into (14) gives

〈Fj〉TE = ẑ2µ0

|E0|2
|Zz|2

= ẑ2µ0|E0|2
cos2 θi
|ηl|2

, (19)

where ηl is the wave impedance of the liquid. From (17) and (14), the TM pressure is

〈Fj〉TM = ẑ2µ0|H0|2

= ẑ2µ0

|E0|2
|ηl|2

. (20)

Note that the forces in (19) and (20) depend on the impedance of the background, so

changing the sign of the refractive index does not change the sign of the force.

The exact time-averaged force density in the liquid in which the mirror is inserted, from

(12) and for monochromatic light, is [29]

〈fd〉 = 〈∂P
∂t

× µ0H〉

=
ωµ0ǫ0
2

ℑ (χEE×H∗) , (21)

where ℑ is the imaginary part, and we have set P = ǫ0χEE, with χE = ǫl − 1 the assumed

isotropic electric susceptibility. There are two contributors to 〈fd〉, that due to χ′′

E, where

χE = χ′

E+iχ′′

E , and that associated with the standing wave within the beam region where the

incident and reflected fields overlap in the neighborhood of the mirror. Any force imparted

to the liquid could produce a mechanical force on the mirror. However, the liquids used

in the experiments had small loss [8], so the force on the mirror due to absorption in the

background liquid is neglected and the dielectric constant of the background is assumed to

be real. The ẑ-component of the force density near the mirror for the TE case, from (21)

for a lossless liquid, is

〈fd〉 = −ẑ
ωµ0ǫ0
2

ℑ (χ′

EEyH
∗

x)

= ẑǫ0(ǫ
′

l − 1)|E0|2kz sin(2kzz), (22)
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where ǫ′l = ℜ(ǫl) and kz =
√

k2

l − k2
x has been assumed real. The total z-dependent pressure

on the liquid becomes

〈Fd〉 =

∫

0

z→−∞

〈fd〉 dz. (23)

In the Jones and Leslie experiment [8], the compact beam (with a 0.6 mm spot) is incident on

the mirror at 6.4◦, meaning that there is a standing wave pattern with triangular support

that reduces as one moves away from the mirror (in the −z-direction, referring to (22)).

Consequently, there is a small net negative pressure for each period of the standing wave

at the extremities. Small loss may also enhance the standing wave near the mirror. The

resulting net negative force on the liquid (〈Fd〉 < 0) is related to the picture of the momentum

delivered to the mirror and described by (11). The key aspect here is that this suggests

there is no net pressure from the liquid applying a force to the mirror in the Jones and

Leslie experiment, leading to the position that 〈fd〉 can be neglected in the determination of

the force on the mirror.

It would thus appear that the pressure 〈Fj〉 N/m2 on a PEC mirror should explain the

Jones and Leslie experiments [8]. However, the ability to do so is by no means obvious by

looking at the relevant equations, (19) and (20). Jones and Leslie [8] find that the force is

proportional to the background refractive index in a set of TE experiments with background

liquids having various refractive indices and θi = 6.4◦, unclear from either equation, and

that the force is independent of polarization, certainly not evident from these equations.

The laser power was fixed by a correction method [8]. This was the major component

of the calibration and accounted for reflections at the glass window, liquid interface - the

reflection from which varied due the various liquids in which the mirror was immersed. The

free space to glass window interface had an antireflection coating, presumably for either

normal incidence or TE polarization at θi = 6.4◦, and the initial set of experiments were

done with TE polarization. In the single plane wave picture, this calibration corresponds to

fixing the Poynting vector magnitude

S = ℜ
[ |E0|2

2ηl

]

=
|E0|2
2η0

√
ǫl, (24)

leading to

|E0|2 =
2η0S√

ǫl
. (25)
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Substituting (25) into (19) and (20) gives

〈Fj〉TE = ẑ
4S

c
cos2 θi

√
ǫl (26)

and

〈Fj〉TM = ẑ
4S

c

√
ǫl. (27)

Equations (26) and (27) fulfill the first requirement of predicting that the radiation pressure

on the mirror is proportional to the refractive index of the background medium, n =
√
ǫl,

provided that the Poynting vector is constant. Hence, the most important conclusion here

is that the Jones and Leslie experiment showing the radiation pressure is proportional to

the background refractive index can be predicted with a force formulation stemming from

Maxwell’s equations with use of the Abraham momentum. With a ẑ-directed detector

aperture, (26) and (27) hold with S → Sz, where the quantity preserved is Sz, the z-

component of the Poynting vector.

The Jones and Leslie experiments [8] show the rather surprising result that the radiation

pressure is independent of polarization. The data show the ratio of the observed pressure

for the two linear polarizations (TE and TM) with θi = 6.4◦ for various background liquids,

and for θi = 20◦ for one case. The results indicate to two significant figures that the pressure

is independent of polarization for θi 6= 0. In the simplified example geometry, consider that

ẑ is the unit vector normal to the detector. In comparing the pressure due to TE and TM,

the correction factors differ because of the polarization-dependent loss, notably from the

antireflection coating. Therefore, the argument here is that Sz is maintained constant in the

power calibration.

For the TE case and assuming lossless propagating fields,

Sz =
|E0|2
2Zz

. (28)

Using (28) in (19),

〈Fj〉TE = ẑ
4µ0Sz

Zz

= ẑ
4Szkz
ω

, (29)
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assuming Zz and kz real. For TM polarization with real Zz, from (20),

〈Fj〉TM = ẑ
4µ0SzZz

η2l

= ẑ4µ0Sz

(

kz
ωǫlǫ0

)

1

η2l

= ẑ
4Szkz
ω

. (30)

Notice that the TE pressure (29) and the TM pressure (30) with fixed Sz are identical.

Consequently, it can be conjectured that the normalization used in the Jones and Leslie

experiment [8] also resulted in a polarization-independent and angle-independent force.

The development of the electromagnetic force from Maxwell’s equations and using the

Abraham momentum leads to the important force expressions given as (8) and (11), and the

simpler form for plane waves in homogeneous isotropic media in (12) that was used here to

explain the Jones and Leslie experiments. The equivalent explanation of the experimental

results can be built using the Lorentz force (the qv×µ0H component, where v is velocity and

q is charge). A primary observation from the treatment presented here is that the measured

force on a mirror can be explained using the Abraham momentum as being proportional to

the refractive index of the background medium, provided the Poynting vector is constant.

Therefore, the Jones and Leslie experiments do not necessarily support the validity of the

Minkowski momentum. This classical picture presented here is also consistent with the

measured atomic recoil being proportional to the background refractive index. One might

therefore expect that the force density expressions in (8) or (11), or their relativistic forms,

may explain observable macroscopic forces. Of importance in a number of applications,

arbitrary dispersion and loss can thus be rigorously treated. This is particularly important

in the treatment of metamaterials, where the time derivative terms in (8) and (11) allow the

incorporation of material dispersion for an arbitrary electromagnetic temporal field, and the

anisotropy common in lattice-based metamaterials can be included in P and M. Provided

that local homogenization applies [30], forces on dispersive structured material, even when

homogenization does not hold, can thus be determined by integrating the force density.
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