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Cross sections for proton knockout observed in (e, e′p) reactions are apparently quenched by a
factor of ∼0.5, an effect attributed to short-range correlations between nucleons. Here we demon-
strate that such quenching is not restricted to proton knockout, but a more general phenomenon
associated with any nucleon transfer. Measurements of absolute cross sections on a number of tar-
gets between 16O and 208Pb were analyzed in a consistent way, with the cross sections reduced to
spectroscopic factors through the distorted-wave Born approximation with global optical potentials.
Across the 124 cases analyzed here, induced by various proton- and neutron-transfer reactions and
with angular momentum transfer ` = 0–7, the results are consistent with a quenching factor of 0.55.
This is an apparently uniform quenching of single-particle motion in the nuclear medium. The effect
is seen not only in (d,p) reactions but also in reactions with A = 3 and 4 projectiles, when realistic
wave functions are used for the projectiles.

PACS numbers: 21.10.Jx, 25.30.Dh, 25.40.Hs, 25.55.Hp

The mean-field description of nuclei, where valence nu-
cleons move in single-particle orbits in the field gener-
ated by the remaining nucleons, has been tremendously
successful. It is the basis of the shell model of nuclear
structure, which quantitatively describes many aspects
of nuclear properties. The mean field is, however, an ap-
proximation. At close distances, short-range correlations
between nucleons must interfere with such a description.
The study of processes where single nucleons are added
or removed from a nucleus is a way of testing the limits
of the approximation.

The data from transfer reactions form much of the ex-
perimental foundation of our understanding of nuclear
structure. Cross sections from nucleon-transfer reactions
are a measure of the overlaps between the target nucleus
and the states formed when a nucleon is added or re-
moved from the target. Thus these reactions have been
used to test models of nuclear structure by comparing
spectroscopic overlaps between initial and final nuclear
states. The spectroscopic overlaps are represented by
spectroscopic factors, effectively reduced cross sections.
They are the experimentally measured cross section di-
vided by the calculated one for a single-particle state with
the same energy and quantum numbers. The summed
reduced cross sections (or spectroscopic factors) with a
given set of quantum numbers `, j are a measure of the
occupancy of the corresponding orbit [1].

In recent work [2, 3] the quantitative consistency of nu-
cleon transfer – in particular, the reduction of experimen-
tal cross sections using the distorted-wave Born approx-
imation (DWBA) – was investigated using cross sections
from nucleon-transfer reactions on the stable Ni isotopes.
According to the Macfarlane-French sum rules [1], the
summed spectroscopic strengths, including both adding
and removing on a given target, must be equal to the

degeneracy of the orbit in question. This provides a
method for determining the factor by which the observed
cross sections, corrected for the reaction mechanism, dif-
fer from expectations.

It was found [2–4] that this procedure gave consistent
and very similar normalizations for groups of nearby tar-
get nuclei. In the present Letter we focus our attention
on the value of this normalization and extend our analysis
to include reaction data on targets 16 ≤ A ≤ 208. A va-
riety of proton- and neutron-transfer reactions is consid-
ered, again with the criterion that the Macfarlane-French
sum rules are satisfied. For reactions such as (3He,α)
and (α,3He), we use the recent form factors based on
Green’s function Monte Carlo (GFMC) calculations [5]
where previously more empirical approaches have been
used.

In the late 1980s and early 1990s, careful studies were
carried out at the NIKHEF facility of the (e, e′p) proton-
knockout reaction [6] on a range of nuclei from A = 7
to 208. Reactions with hadronic probes are localized to
the nuclear surface, while the (e, e′p) reaction probes the
interior of the nucleus, mapping out the shape of the va-
lence nucleon wave functions. The extraction of spectro-
scopic factors from this process is considerably less model
dependent than for hadron-induced reactions. Concen-
trating mostly on closed-shell nuclei, Ref. [6] found that
the spectroscopic factors of low lying states derived from
(e, e′p) for proton removal were consistently too low by
a factor of almost two. A reanalysis of proton-removing
(d,3He) reactions on the same targets as those used in
the (e, e′p) studies, using consistent parameters in the
analysis, showed a similar level of quenching [7]. Esti-
mates of the effect of short-range correlations on these
absolute overlaps by Pandharipande and co-workers con-
cluded that “at any time only 2/3 of the nucleons in the
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nucleus act as independent particles moving in the nu-
clear mean field” [8].

In the past, the reduction of transfer cross sections to
spectroscopic factors was done using DWBA to account
for the energy- and target-dependence of the overlaps be-
tween the incident and outgoing channels and the final
bound states. It was often done with different assump-
tions and approximations, and different distorting poten-
tials and bound-state parameters. The resulting spectro-
scopic factors could only be considered in a relative sense,
and while various normalization procedures were adopted
in an attempt to determine the absolute scale, this was
often not done consistently. Indeed, the need to measure
accurate absolute cross sections, as opposed to relative
ones, was often not a primary objective of many mea-
surements. With faster computers, DWBA calculations
were modified to include finite-range effects. There have
been several new global surveys that parameterize the
dependence of optical-model potentials on energy, mass,
and proton-neutron ratio (Refs. [11, 25, 26] are exam-
ples).

In several recent experiments [2, 4, 12] we have made
use of the normalization procedure described above, con-
sistent within each experiment, but we were not consis-
tent in the choice of the precise recipes for parameters
between different analyses. In the present work we have
re-analyzed these data in an overall consistent fashion,
and included some of our other measurements. A few
results from the literature, for which the cross sections
seemed to have been measured carefully and where it was
possible to retrieve the numerical values from the publi-
cations, have also been included.

The data considered here fall into two distinct cate-
gories, which were treated slightly differently. The first
type involved data where both adding and removing re-
actions on the same target nuclei were available. For
these data, the normalization was extracted by summing
all of the adding and removing strength for a given `, j,
and requiring that the sum of these adds up to the total
degeneracy of the orbit. The associated quenching factor
Fq is given by

Fq ≡
1

(2j + 1)

[
Σ

(
σexp
σDW

)add

j

+ Σ

(
σexp
σDW

)rem

j

]
, (1)

where σexp and σDW are the experimental and DWBA
cross sections, respectively. The superscripts ‘add’ and
‘rem’ denote adding and removing cross sections.

The second type were those where only adding or only
removing data were available for a given nucleus. The
above method was modified, with the assumption of a
closed shell as was done for the (e, e′p) data [7], to require
that the total strength add up to the number of vacancies
in the closed shell, or the number of particles outside it,

such that

Fq ≡
1

(2j + 1)

[
Σ

(
σexp
σDW

)
j

]
. (2)

The question of missing fragmented strength was ad-
dressed in Refs. [3] and [4], where it was found that the
observed strengths of transitions, in between shells, were
distributed in an approximately Lorentzian shape in ex-
citation energy. The fraction estimated to fall outside the
window of observation was less than a few percent of the
total. It was also found in Ref. [3] that the spectroscopic
factors for weak transitions begin to be unreliable for
states that are lower than ∼ 0.1% of the single-particle
strength (for a well-matched ` value), probably because
of competition from higher-order processes.

The majority of the data we have re-analyzed here
is from experiments at the now-closed Wright Nuclear
Structure Laboratory at Yale University between 2003
and 2011. Most of these data are published, though as
mentioned, the analyses were not carried out with exactly
the same parameters. All the measurements yielded ab-
solute cross sections at the maxima of the angular distri-
butions. The reactions were carried out at energies a few
MeV/u above the Coulomb barrier. For this analysis, as
we had done previously, momentum-matching considera-
tions were taken into consideration: for all the transitions
considered, |kout − kin|R u ` to within 1-2 ~, where the
k’s are the incident and outgoing momenta (corrected for
the Coulomb barrier), R is an estimate of the average in-
teraction radius, and ` is the orbital angular-momentum
transfer.

The data analyzed here include the following adding
and removing reactions performed on the same targets:
(d,p), (p,d), (α,3He), and (3He,α) on 58,60,62,64Ni [2, 3],
74,76Ge, 76,78Se [4], and 130Te [12]. Those data for which
just adding or removing reactions were probed include:
16O(d,p) [13], 40Ca(d,p) [14], 48Ca(d,p) [15], the (d,p)
and (α,3He) reactions on 88Sr, 90Zr, and 92Mo [16], the
(d,p), (p,d), (3He,α), and (3He,d) reactions on 98,100Mo
and 100,102Ru [17], the 112−124Sn(3He,d) and (α,t) re-
actions [18], the (p,d), (3He,α), and (α,3He) reactions
on the stable even N = 82 isotones [19, 20], and the
(d,p) [21] and (α,3He) [22] reactions on 208Pb. In the
case where there were no published numerical cross sec-
tion values, angular-distribution plots were digitized and
data extracted, with an increase in the uncertainties from
this process estimated as < 5%.

To allow for distortions and kinematic matching in re-
lating cross sections to spectroscopic factors it is conve-
nient to use the DWBA. The target single-particle wave
functions of the transferred nucleon were generated using
a Woods-Saxon potential with fixed geometrical parame-
ters. This analysis was carried out using the finite-range
DWBA code ptolemy [23] with the following consider-
ations.
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FIG. 1. The quenching factor Fq versus target mass A. The (e, e′p) data in Panel (a) are from Refs. [7, 9]. The grey band
represents the mean ±2σ of the (e, e′p) data to guide the eye. The data in Panels (b), (c), (d) are from this analysis and are
tabulated in the Supplemental Material [10]. Solid symbols are from adding and removing reactions while the empty ones are
from just adding or just removing.

Projectile wave function.—For the deuteron wave func-
tion we used the Argonne v18 potential [24] in the (d,p)
and (p,d) reactions. For the more complex A = 3 and
4 projectiles, we used the GFMC-derived parameteriza-
tions from Brida et al. [5].

Target wave function.—The potential depth was varied
to match the binding energy of the transferred nucleon for
the state in question. The radial parameters were chosen
to be consistent with the values obtained in the (e, e′p)
work of Ref. [7] with a radius parameter r0 = 1.28 fm and
diffuseness a = 0.65 fm, representing the average values.
The spin-orbit potential depth was Vso = 6 MeV, with
rso0 = 1.1 fm, and aso = 0.65 fm.

Optical-model potentials.—For protons we used the
global potentials of Koning and Delaroche [25]. Similarly
for deuterons, we used the global potentials of Ref. [11],
and for 3He, the recent study of Ref. [26]. The latter was
also used for tritons, though it is less clear how appro-
priate it is. For α particles, we used the fixed potential
of Ref. [27] that was derived from the A = 90 mass re-
gion. Other reasonable choices for potentials give similar
results [2, 4].

The values of σexp/σDW were used with Eq. (1) or (2)
to obtain quenching factors Fq that are summarized in
Table I, categorized by reaction. A complete table of the
data is in the Supplemental Material [10]. The quench-
ing factors obtained in this analysis are also plotted in
Fig. 1, along with those from (e, e′p), as a function of
mass number. The value appears to be independent of
target mass and reaction, with a mean value of 0.55 and
an rms variation of 0.10. It is also comparable to that
seen in the (e, e′p) data. Figure 2 shows the data em-
phasizing that the quenching factor is independent of `
value, at least between 0 and 7.

The uncertainties in the Fq values are difficult to es-
timate. As noted previously (e.g. Ref. [2]), systematic
effects dominate the uncertainties including errors in ab-

TABLE I. Mean quenching factor by reaction type.

Reaction, ` transfer
Number of

Fq rms spread
Determinations

(e, e′p), all ` 16 0.55 0.07
(d,p), (p,d), ` = 0-2 40 0.53 0.09
(d,p), (p,d), ` = 0-3 46 0.53 0.10
(α,3He), (3He,α), ` = 4-7 26 0.50 0.09
(α,3He), (3He,α), ` = 3-7 34 0.52 0.09
(3He,d), ` = 0-2 18 0.54 0.10
(3He,d), ` = 0-4 26 0.54 0.09
(α,t), ` = 4-5 14 0.64 0.04
(α,t), ` = 3-5 18 0.64 0.04

All transfer dataa 124 0.55 0.10

a Rows 3, 5, 7, and 9.

solute cross sections, missed (or mis-assigned) states, the
robustness of assumed shell closures, the effects of mul-
tistep mechanisms, and the choice of parameters in the
DWBA analysis, and indeed in the assumptions inherent
in DWBA. For a global average value for Fq of 0.55 we
find the rms variations amongst all the individual deter-
minations to be 18%.

The only data that our group had obtained in the
past decade that does not fit this pattern is a mea-
surement with the (d,3He) reaction [28], taken at much
higher energies than the rest of the results included here,
∼35 MeV/u above the Coulomb barrier instead of the
∼2-5 MeV/u for the rest. The value of Fq obtained for
the high energy data set, using the global optical-model
potentials adopted in this analysis, was found to be in-
ternally consistent but Fq ≈ 1 instead of 0.55. We found
that at the higher energies, the sensitivity to the choice of
optical-model distortions amongst various global param-
eterizations is much larger (∼60%) than at the lower en-
ergies. For the rest of the data represented here, the cor-
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FIG. 2. Average of the quenching factor for different `
transfer. The error bars shown represent the rms spread in
values. The grey band is the same as in Fig. 1.

responding sensitivity for all reactions was < 10%, apart
from the (3He,d) reaction which is < 20%. The higher
energy data are therefore not included in the present
analysis. The sensitivity to parameters perhaps points
to problems with the parameterizations in the global po-
tentials for energies far above the barrier.

Gade et al . [29] plotted a ‘reduction factor’, which
is the spectroscopic factor derived from measured cross
sections divided by the expected shell-model value for
a given state, versus an asymmetry parameter ∆S de-
fined as Sn − Sp (or Sp − Sn) for neutron knockout (or
proton knockout). ∆S is therefore an approximate mea-
sure of the difference in the proton and neutron Fermi
surfaces. Results from nucleon-knockout reactions have
shown a trend, where this quantity approaches unity for
large negative values of ∆S, and becomes much smaller,
around 0.2, for large positive values. However, Lee et
al. [30] saw no such trend in (p,d) transfer reactions on
various Ar isotopes, though it has been suggested that
the results may not be definitive [31]. In the recent work
of Ref. [32], no such behavior in the reduction factor was
found in proton- and neutron-removing from 14O, prob-
ing extreme positive and negative values of ∆S. We dis-
play our results plotted against the more limited range
in ∆S that is accessible with stable targets (about half
what can be covered with radioactive beams) in Fig. 3,
where no obvious trend is seen.

Other reaction models can be used to reduce experi-
mental cross sections to spectroscopic overlaps, and one
may perhaps expect that, if applied consistently, they
are likely to yield similar results. For example, we used
the finite-range adiabatic wave approximation formalism
of Johnson and Tandy [33] with the code twofnr [34]
for ` = 1 (p,d) and (d,p) on the Ni isotopes. The val-
ues of Fq differ by less than 10%. We used DWBA as
the most convenient method to remove the dependence
of the reaction cross sections on energy, nucleus, angular

(e, e0p)

n transfer
p transfer

�S (MeV)

F
q
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FIG. 3. Fq versus ∆S. The (e, e′p) data are from Refs. [7, 9].
The grey band represents the (e, e′p) data as in Fig. 1.

momentum, and reaction type.
The quenching of the single-particle mode appears

to be a quantitatively uniform property of the nuclear
many-body system from light to heavy nuclei. Correct-
ing for this quenching makes the measured spectroscopic
factors directly comparable to spectroscopic factors from
shell-model calculations of nuclear structure that start
with nucleons in independent-particle orbits. For mod-
els where many-body effects are taken into account, such
as ab-initio calculations of nuclear structure, the corre-
lations are already included, and spectroscopic overlaps
may be directly compared to calculations (e.g. Ref. [35]).

In summary, we find that spectroscopic factors from
single-nucleon transfer reactions derived from a self-
consistent analysis are quenched with respect to the val-
ues expected from mean-field theory by a constant fac-
tor of 0.55, with an rms spread of 0.10, independent
of whether the reaction is nucleon adding or removing,
whether a neutron or proton is transferred, the mass
of the nucleus, the reaction type, or angular-momentum
transfer, at least in the range of stable nuclei.
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