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We present a theory of flexural wave propagation on elastic shells having nontrivial geometry,
and develop an analogy to geometric optics. The transport of momentum within the shell itself
is anisotropic due to the curvature, and as such complex classical effects such as birefringence
are generically found. We determine the equations of reflection and refraction of such waves at
boundaries between different local geometries, showing that waves are totally internally reflected,
especially at boundaries between regions of positive and negative Gaussian curvature. We verify
these effects using finite element simulations and discuss the ramifications of these effects for the
statistical mechanics of thin curved materials.

PACS numbers:

Curved shells appear in nature over a vast range of
length scales from carbon nanotubes [1] to continental
plates [2]. Understanding their mechanics and, in some
cases, equilibrium fluctuations plays a key role in a va-
riety of systems of interest in biological physics and ma-
terial science such as viral capsids [3, 4], cellular mem-
branes [5–7], plant morphogenesis [8], and self-assembled
origami [9–11]. In spite of the large range of length scales
and material properties, the mechanics of these shells are
unified by the constraints imposed by the coupling of
elasticity and geometry in materials whose lateral extent
is much larger than their thickness.

This geometric property leads to a dramatic separa-
tion of the energy scales associated with bending and
stretching. Generically, thin sheets and filaments are sig-
nificantly softer to bending, allowing a unified treatment
of wrinkling, crumpling, and a host of other morphologi-
cal transitions under external forces or confinement [12–
18]. Shells having a more complex geometry in their un-
strained state, however, develop an inherent resistance
to bending from the geometric coupling of the soft bend-
ing mode to the stiffer stretching one [19, 20], as a con-
sequence of Gauss’s Theorema Egregium, which relates
changes in Gaussian curvature to stretching of the sur-
face. Recently, an analysis of curved shell indentation
by Vaziri and Mahadevan [21] of the response to static
locally imposed forces has shown that the linear response
of the deformation field depends qualitatively on the sign
of the Gaussian curvature.

Motivated by this analysis, we examine in this Letter
the propagation of flexural waves in shallow shells of con-
stant curvature. We show that there is a useful analogy
between this problem and the more familiar analysis of
the propagation of light with the local curvature play-
ing the role of the index of refraction. We derive an
analog of Snell’s law for refraction between two inter-
faces with differing optical properties; in our case, the
material is identical across the interface, but only the
local geometry changes. We find that curved shells are

generically birefringent and may exhibit total internal re-
flection. Additionally, waves within regions of negative
curvature propagate primarily along certain directions,
and interfaces separating positive and negative Gaussian
curvature regions lead generically to a range of incident
angles that exhibit total internal reflection. The combi-
nation of these two effects indicates that curved elastic
manifolds may act as barriers causally disconnecting re-
gions of differing Gaussian curvature, leading to anoma-
lously slow phonon equilibration, with potential implica-
tions for the statistical mechanics of such surfaces.

Even with a linear constitutive relation for the ma-
terial’s elasticity, the equations governing elasticity of
thin surfaces are nonlinear due to geometry. For cer-
tain cases, however, they may be linearized and useful
expressions coaxed from the more general ones. The
energy functional that describes a thin, elastic shell is
given by F =

∫
S

(NαβEαβ +MαβKαβ), where Eαβ and
Kαβ are the deformation tensors associated with strain
and bending of a surface, respectively. A linearly elas-
tic material allows us to write the local stress tensor as
Nαβ = Y h[(1− ν)Eαβ + νEγγ ] and the bending moment

tensor as Mαβ = κ[(1−ν)Kαβ +νKγ
γ ]; these linear func-

tionals of the curvature and deformation tensors of the
surface introduce the Young’s Y and bending κ moduli,
the shell’s thickness h and Poisson ratio ν. The details
are standard and can be found in Refs. [22, 23].

The Euler-Lagrange equations that result from this ex-
pression are nonlinear both in geometry and deformation.
In only a few situations are there known analytic solu-
tions that take into account the nonlinearities of geomet-
ric origin [24, 25]. Conversely, by considering a flat shell
but retaining the nonlinearities in the deformation state,
one arrives at the Föppl-von Kármán equations, which
are notoriously difficult to solve [26]. We will consider the
intermediate asymptotic limit of the Donnell-Mushtari-
Vlasov (DMV) equations [21, 22], where nonlinearities
in the deformation field are neglected but stresses in-
troduced by leading order curvature terms are retained.
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In this case the deformation tensors may be written in
terms of the in-plane displacements vα, the normal dis-
placement ζ, and the curvature tensor of the undeformed
shell dαβ as

Kαβ ≈ DαDβζ (1)

Eαβ ≈
1

2
(Dαvβ +Dβvα)− dαβζ, (2)

with Dα the covariant derivative on the surface. These
approximations neglect terms higher order than O(dαβ)
in the stress. This results in neglecting terms of the
form dαγd

γ
βM

αβ and Dα(dβγM
γα) in the force balance,

substantially simplifying the analysis. In the absence of
dαβ these deformation tensors reduce to the flat case and
the equations of plate elasticity are recovered. In antici-
pation of examining a “shallow” shell, we assume that
the spatial extent of the deformations are small com-
pared to the shell’s radii of curvature, so we may replace
covariant derivatives by partial derivatives: Dα → ∂α.
In the same limit we may simplify the in-plane stresses
by introducing the Airy stress function χ, defined by
Nαβ = εαηεβξ∂η∂ξχ (εαβ is the 2D alternating tensor).
We are immediately led to the following equations of un-
dulatory dynamics (in vacuum) and compatibility of the
surface [22]:

κ∇4ζ − L[χ] = −ρh∂
2ζ

∂t2
(3)

1

Y h
∇4χ+ L[ζ] = 0, (4)

where ρ is the shell’s mass density. The linear operator
L = εαηεβξdαβ∂η∂ξ is a measure of the incompatibility of
the surface with the flat space solution [27] and couples
bending and stretching through the local curvature.

In analogy to the standard development of Snell’s law
in which one considers the propagation of light across an
interface separating two regions with differing but spa-
tially uniform dielectric constants, we consider flexural
waves propagating from one region of constant curvature
to another – see Fig.1a. A continuously varying local ge-
ometry may later be accounted for by a succession of such
interfaces between regions of constant curvature. A flex-
ural wave propagates through one region, with a given
(possibly anisotropic) dispersion relation, impinges upon
a region of differing geometry and must conserve mo-
mentum at the interface due to translational invariance;
hence, momentum conservation requires refraction [28].
Unlike in classical optics where any two dielectric con-
stants may, in principle, be in contact, the continuity
of the surface and its local slopes forces the principal
curvature along the interface to remain constant. Conse-
quently, there are only four possible combinations of cur-
vature mismatch allowed at an interface – see Fig. 1b. In
all cases we choose a coordinate system aligned with the
principal axes of curvature; it will be useful to further
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FIG. 1: (Color online) (a) Schematic of flexural waves refract-
ing upon passage from one region of curvature to another, sep-
arated by the black line. Two refracted waves are produced in
the birefringent (cylindrical) region on the right. (b) Proto-
typical interface types for traveling flexural waves on curved
surfaces. Along the interface, kinematic constraints require
the curvature to be continuous, leaving only a small number
of possible choices.

parameterize their geometry by defining β = Rx/Ry to
be the ratio of these principal curvatures.

To examine the dispersion relation for traveling plane
waves in regions of constant geometry, we look for solu-
tions of Eqs. 3,4 of the form ζ(x, t) = eiq·x−iωtζ̂(q, ω),
χ(x, t) = eiq·x−iωtχ̂(q, ω) obtaining a dispersion relation
ω(q) as the solution to [29, 30]

ρhω2 = κq4 +
Y h

q4
L2
q (5)

Lq =
q2y
Rx

+
q2x
Ry

, (6)

From this solution we determine the group velocity vg =
∂ω/∂q of flexural waves to be

ω(q)
∂ω

∂q
= 2q3q̂ +

(1− β) sin 2θ

q
(sin2 θ + β cos2 θ)q̂⊥,

(7)

where θ is the angle between q and the x-axis, and we
have non-dimensionalized times and lengths by ω →
ω/ωR and q → q` where ω2

R = Y/(R2
xρ) is the ra-

dial “ringing frequency” of a cylinder of radius Rx, and
`4 = κR2

x/Y h. For q` � 1 the shell can be considered
in the “membrane” limit, where bending terms can be
completely neglected. For q` � 1 the shell is essentially
flat. Our analysis focuses on q` ∼ 1. The first term in
Eq. (7) reproduces the usual flexural wave dispersion re-
lation for thin plates ρhω2 = κq4, while the second term
carries momentum perpendicular to the wave vector and
depends on curvature. The magnitude of the group ve-
locity is also anisotropic as shown in Fig. 2 for saddle,
ellipsoidal, and cylindrical surfaces.
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FIG. 2: (Color online) Examples of anisotropic flexural wave group velocities for different values of β. Figures show group
velocities on a polar plot, with θ measured from the positive x−axis. Black symbols show group velocity measurements from
finite element simulations – see supplemental information – to be compared to the (solid, blue) predictions of the linearized
theory. a) For saddles, β < 0 the velocity has at least four lobes of maximum speed (compare to the static deformation
characteristics in Ref. [21]) as seen for β = −1,−3 solid (blue) and dashed (red) lines respectively, with q = 1. b) Group
velocities at q = 1 for ellipsoidal surfaces for β = 1 (solid, blue), a sphere, and β = 2 (dashed, red) show smaller variations with
direction. c) Cylinders are more pathological because β = 0 and the Gaussian curvature is zero. As a result, the anisotropy
depends solely on the wavenumber: q = 0.5, 0.75 solid (blue) and dashed (red) respectively. This pathology is seen most
clearly in the magnitude of disagreement between the linearized theory and the finite element simulations; see supplemental
information for more details.

For a generic anisotropic surface, a flexural ray will
bend with respect to the principal axes. In order to
address this, consider the anisotropic term in Eq. 7:
(1 − β) sin(2θ)(sin2 θ + β cos2 θ). Except for a sphere
(β = 1), this term is generally nonvanishing so that
the group and phase velocities are not collinear, unless
the waves propagate along the principal curvature direc-
tions θ∗ = 0, π/2. When not along one of these special
directions where they do not bend, rays bend towards
the direction of smallest curvature for β > 0 [31]. For
β < 0, there is a new special direction θ∗ = tan−1

√−β:
if θ < θ∗ the rays bend towards the x-axis, otherwise
they bend towards the y-axis. These results can be un-
derstood in terms of Fermat’s principle [29, 31, 32].

We now turn to the refraction and reflection at the
boundary between two different geometries. A ray with
wave vector q making an angle of θi with respect to the x
axis is injected into a region with principal curvature ra-
tio βi and encounters a boundary along the y-axis (see fig-
ure 1) with a different geometry, parametrized by βt, and
wave number k. Matching the undeformed surface at the
boundary requires Ry to be continuous through the inter-
face, resulting in four allowed configurations – see Fig. 1b.
We calculate the transmitted angle θt with respect to the
boundary normal – see Fig. 1 – in terms of the incident
angle θi by imposing conservation of the momentum tan-
gent to the interface, i.e. |q| sin θi = |k| sin θt, resulting
in the Snell’s law analog[

ω2 −A(βi, θi)
]1/4

sin θi =
[
ω2 −A(βt, θt)

]1/4
sin θt,

(8)

where A(β, θ) = (β cos2 θ+ sin2 θ)2 contains the geomet-

ric information. The simplest form of these results are for
plate, cylinder, sphere, and saddle where A = 0, sin4 θ, 1,
and cos2(2θ) respectively.

Several representative curves of θt as a function of
θi are shown in Fig. 3a (for simplicity we use only
β = 0,±1). The dashed and solid curves show the trans-
mitted ray angles – two solutions are possible in bire-
fringent cases. There are no solutions in the grey re-
gions indicating total internal reflection (TIR). We do
not show results for the sphere/cylinder interface, since
we wish to highlight the effects of anisotropy on bire-
frigence and TIR; these effects are far more pronounced
in the other prototypical interfaces. Consider as an exam-
ple the plate/cylinder interface (see supplement for nu-
merical tests of this case), where the incident region has
A = 0, while the cylindrical region has A(0, θt) = sin4 θt.
Because the cylindrical region has an anisotropic dis-
persion relation, the phase velocity can be multivalued,
and, in order to conserve momentum, it is possible that
two rays are transmitted. This birefringence occurs in
anisotropic dielectric media as well, and results from the
multi-valuedness of the phase velocity in the medium [33].
Interfaces that include regions of negative Gaussian cur-
vature include bands of TIR, as opposed to a critical an-
gle above which all the incident rays are reflected. The
solutions of Eq. 8 depend on both frequency and incident
angle. Scanning over the input parameters, we arrive at
the plots shown in Fig. 3b in which regions of single trans-
mitted ray propagation (S), dual ray propagation (B),
and total internal reflection (T) are shown. For large ω
the curvature effects disappear, as the interface becomes
transparent to sufficiently short wavelengths, except at
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FIG. 3: (Color online) Transmitted angle as a function of
the incident angle, for ω = 0.5. a) Representative curves for
Re{θt} as a function of θi. Gray regions represent areas where
Im{θt} 6= 0, indicating total internal reflection. b) Single
mode transmission (S), birefringence (B), and total internal
reflection (T) at different frequencies for different geometries
(displayed as insets).

grazing incidence. It is of particular interest that in sad-
dle regions most of the energy propagates at particular
angles that depend on β; this point taken in tandem with
the Snell’s law results indicates that for the right value
of β and ω flexural waves will be trapped within the neg-
ative Gauss curvature regions.

To test these analytic results, we performed finite el-
ement simulations using ABAQUS (Dassault Systemés)
on a closed shell having boundaries between regions of
constant geometry; see supplemental information for sim-
ulation details. The most dramatic results are obtained
at boundaries between positive and negative Gaussian
curvature. Consequently, we examine the “peanut” shell
in Fig. 4 formed from a catenoid-like region (negative
Gauss curvature) with β ≈ −0.5 bounded at the top and
bottom by spherical caps β = 1. The boundaries are
shown by (black) dashed lines. At time t = 0, we apply
an oscillatory point force at the equator of the shell with
ω ≈ 1 (left) or ω ≈ 5 (right). For ω ∼ 1 the analytic the-
ory predicts a wide range of incident angles leading to
TIR – see Figs. 3a,b, bottom panel; we see that for short
times waves are confined to the saddle region reflected
off the top and bottom boundaries – see Fig. 4a. Over
time they leak into the spherical caps due primarily to
transmission occurring at normal incidence, as expected

from the theory – see Fig. 3b, bottom panel. For ω ≈ 5,
the interface is predicted to be essentially transparent;
indeed, the simulation shows that waves propagate prop-
agate freely across the boundary – see Fig. 4b.

displacement

! ⇡ 1 ! ⇡ 5

t = 0.2t = 0.2 t = 0.3 t = 0.3

a) b)

FIG. 4: (Color online) Finite element simulations showing
total internal reflection at the boundary of negative and pos-
itive Gaussian curvatures, denoted by the dashed line. a) For
ω ≈ 1, the linear theory predicts a range of incident angles
for which rays exhibit TIR. For this shell, with β ≈ −0.5,
the rays propagate preferentially at θ∗ ∼ tan−1(

√
−β) ≈ 35◦,

which falls within the predicted band of incident angles for
TIR. The shell does not have a constant curvature, and we
use a point force instead of a plane wave so the wave trapping
is temporary. Over longer times they leak into the positive
Gaussian curvature region. b) For ω ≈ 5 the shell is pre-
dicted to be essentially transparent. This too is supported by
the simulation.

We have shown the utility of an analogy to geometric
optics for understanding the dynamics of flexural waves
on surfaces of nontrivial geometry. Curvature acts as
the local index of refraction and interfaces between pos-
itive and negative Gaussian curvature in particular lead
to total internal reflection of waves propagating from the
negative curvature side. This suggests that such bound-
aries generate causally disconnected regions on the man-
ifold such that flexural waves in the two sectors cannot
equilibrate, at least within our linear analysis. The im-
plications for the statistical mechanics of such waves on
manifolds of complex geometry have not been explored.
More generally, one may inquire about the role of lo-
calization and enhanced backscattering from randomly
curved surfaces even without the singular limit of crum-
pling [34–36]. In addition to such random shapes one
may be able to use prescribed geometries to redirect flex-
ural waves with a purely geometric wave-guide to “cloak”
regions of the membrane, as has been explored using
anisotropic metamaterials [37]. Nonlinearities ignored
here are known, in some cases, to lead to anomalous elas-
ticity [7, 27] and result in dynamical equations reminis-
cent of weak turbulence [38]; the role of geometry in such
cases remains to be fully explored.
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