Constructing a Gapless Spin-Liquid State for the Spin-1/2 J_{1}-J_{2} Heisenberg Model on a Square Lattice
Ling Wang, Didier Poilblanc, Zheng-Cheng Gu, Xiao-Gang Wen, and Frank Verstraete
Phys. Rev. Lett. 111, 037202 — Published 17 July 2013
DOI: 10.1103/PhysRevLett.111.037202
Constructing gapless spin liquid state for the spin-$1/2$ $J_1 - J_2$ Heisenberg model on a square lattice

Ling Wang,1,2 Didier Poilblanc,3 Zheng-Cheng Gu,2 Xiao-Gang Wen,4,5,6 and Frank Verstraete1,7

1Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmannagasse 5, 1090 Vienna, Austria
2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
3Laboratoire de Physique Théorique, C.N.R.S. and Université de Toulouse, 31062 Toulouse, France
4Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Institute for Advanced Study, Tsinghua University, Beijing, 100084, P. R. China
7Faculty of Physics and Astronomy, University of Ghent, Krijgslaan 281 S9, B-9000 Ghent, Belgium

We construct a class of projected entangled pair states (PEPS) which is exactly the resonating valence bond (RVB) wavefunctions endowed with both short range and long range valence bonds. With an energetically preferred RVB pattern, the wavefunction is simplified to live in a one parameter variational space. We tune this variational parameter to minimize the energy for the frustrated spin $1/2 J_1 - J_2$ antiferromagnetic Heisenberg model on the square lattice. Taking a cylindrical geometry, we are able to construct four topological sectors with even or odd number of fluxes penetrating the cylinder and even or odd number of spinons on the boundary. The energy splitting in different topological sectors is exponentially small with the cylinder perimeter. We find a power law decay of the dimer correlation function on a torus, and a $\ln L$ correction to the entanglement entropy, indicating a gapless spin liquid phase at the optimum parameter.

PACS numbers: 75.10.Kt,75.10.Jm

Introduction – Resonant valence bond (RVB) states, which were first proposed by Anderson [1] to describe a possible ground state for the $S = 1/2$ antiferromagnetic Heisenberg model on a triangular lattice, and later to explain the possible mechanism of high-T_c cuprates [2, 3], provide us a rich tool box to construct the so called spin liquid states. The equal weight superposition of the nearest neighbor (NN) RVB state on square lattice was shown to be critical [4, 5]. Several numerical work [6–9] have demonstrated that the equal weight NN RVB states on the kagome and triangular lattices are Z_2 spin liquid states. Recently numerical breakthroughs claimed a spin liquid ground state for the Kagome Heisenberg model [10, 11] and the frustrated spin $1/2 J_1 - J_2$ antiferromagnetic (AF) Heisenberg model on the square lattice [12, 13]. However, these work did not give direct access to the topological nature of the spin liquid states, therefore, a simple variational wavefunction approach is highly desirable. Although the variational energy of the NN RVB state on the kagome lattice [7, 9] is still higher than the energy obtained via the density matrix renormalization group (DMRG) method [10], the topological nature is well understood within the formalism of the projected entangled pair states (PEPSs) [7]. On the other hand, from a projectsive wavefunction [14] approach supplemented by a projective symmetry group (PSG) analysis all possible spin-liquid states on the triangular [15], Kagome [16–19] and Honeycomb [19] lattices have been obtained and classified but, for all lattices, the energetically favorable states are believed to involve longer range RVB. As a result, it is natural to think that a general RVB state within the PEPS formalism is a more practical variational wavefunction, where one can gain simultaneously an optimized energy and a comprehensive picture of the topological nature.

In this paper, we introduce a general RVB state written as a $D = 3$ PEPS, different from Ref. [6, 7], i.e. it includes valence bonds of all length. With a properly chosen singlet sign convention that meets all lattice symmetries on the square lattice, we minimize the energy of the spin $1/2 J_1 - J_2$ AF Heisenberg model at $J_2 = 0.5J_1$ against a single variational parameter c governing the decay amplitude of the long range valence bonds. The idea is therefore to introduce a simple yet competing wavefunction that enables us to fully understand the topological properties of the ground state of the frustrated magnets.

RVB states in PEPS formalism – The equal weight superposition of the NN RVB states can be constructed using a PEPS with bond dimension $D = 3$ as following: each physical site has 4 virtual spins attached, each of which spans a virtual dimension of spin $1/2 \oplus 0$. From the bond point of view, every pair of the NN virtual spins is projected to a block diagonal virtual spin singlet state:

$$|S\rangle = |01\rangle − |10\rangle + |22\rangle, \quad (1)$$

here the virtual indices “0,1” span the subspace of spin $1/2$ and virtual index “2” spans the subspace of spin 0. At the physical site, a projector enforces one of the virtual spins with its spin $1/2$ subspace to be mapped to the physical spin $1/2$ state and the rest of virtual spins
and each P by contracting the virtual index of each here subscript \(\epsilon \) to teleportate: enforcing a singlet between site \(i \) via this site by bonds \(k \) of projectors RVB wavefunction is a parameter \(k \) enumerates 4 possible dimension, realizes spin teleportation without increasing the bond \(s \) generate a singlet pair (\(s_1, s_2 \)) at each vertex. The bond singlet S \(| \rangle \rangle \) is comprised of two shortest paths of \(a \) diagonal singlet is zero. The only shortest path to build the next range AB sublattice singlet is shown in Fig. 2(b), and it consists of three bond singlets and two corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.

Variational ground state energies at $J_2 = 0.5J_1$ – We consider the general RVB wavefunction on a cylinder with finite cylindrical circumference N_c and infinite horizontal length $N_h = \infty$. The physical properties are determined by the eigenvector with the largest eigenvalue of the transfer matrix. Let us introduce a horizontal (vertical) parity number G_h (G_v) which is defined by counting the number of singlets modulo 2 that cross a horizontal (vertical) line joining the two boundaries of the cylinder (going around the cylinder). The two states with $G_h = \pm 1$ (+ is even and − is odd) are orthogonal to corners. The sign of the next range AB singlet is pointing from sublattice A to B. In general, no AA pairings survive (see Appendix) and all AB pairings point from sublattice A to B. To verify this result, we implement a Monte Carlo (MC) sampling of the singlet distribution of (4) and calculate the weight $h(dx, dy)$ defined in Ref. [14] as a function of separation. The result is presented in Fig. 2(c) and is consistent with the above analysis.
FIG. 4: Ground state energies (per site) computed for the $J_1 - J_2$ AF Heisenberg model at $J_2 = 0.5J_1$, as a function of parameter c for the e/o topological sectors of (a) a cylinder ($N_v = 4, 6, 8$) with even-flux ($N_v/2$ even) or odd-flux ($N_v/2$ odd), and (b) a strip geometry with $N_v = 10, \cdots, 18$. For both cases, energy minimizes at $c = 0.35(1)$.

Each other in the thermodynamic limit, and can be transformed from one to another by a cyclic spin permutation of the transfer matrix of the strips by the matrix G meaningfully, but the boundary parity quantum number $N_v = 10$ and bottom vertical virtual spins set to "2"s.

To access larger system size, we study a complementary matrix method and shown in Fig. 4(a) (an even or odd number of flux is chosen to provide the lowest energy) as a function of the variational parameter c. The best variational energy for the spin $1/2 J_1 - J_2$ AF Heisenberg model at $J_2 = 0.5J_1$ is $c = 0.35(1)$ with $N_v = 4, 6, 8$. To access larger system size, we study a complementary geometry where the cylinders are cut open, with the top and bottom vertical virtual spins set to "2"s. We call them the finite (N_v) width strips. For a contractible geometry as strips, the flux parity is no longer meaningful, but the boundary parity quantum number $G_v = e(o)$ still holds. We simulate the leading eigenvectors of the transfer matrix of the strips by the matrix product states (MPS) with the same quantum number G_v in both bra and ket. The ground state energies as a function of the variational parameter c for both sectors $|\Psi(\pm)|_{e/o}$ of the strips with $N_v = 10, \cdots, 18$ are presented in Fig. 4(b). The best variational energy for $J_2 = 0.5J_1$ is at $c = 0.35$, which is in good consistency with the case of finite perimeter cylinders.

The variational energies of $|\Psi(\pm)|_{e/o}$ on cylinders with finite perimeter $N_v = 4, 6, 8$ (N_v must be even, otherwise the system dimersize) are computed exactly via the transfer matrix method and shown in Fig. 4(a) (an even or odd number of flux is chosen to provide the lowest energy) as a function of the variational parameter c. The best variational energy for the spin $1/2 J_1 - J_2$ AF Heisenberg model at $J_2 = 0.5J_1$ is $c = 0.35(1)$ with $N_v = 4, 6, 8$. To access larger system size, we study a complementary geometry where the cylinders are cut open, with the top and bottom vertical virtual spins set to "2"s. We call them the finite (N_v) width strips. For a contractible geometry as strips, the flux parity is no longer meaningful, but the boundary parity quantum number $G_v = e(o)$ still holds. We simulate the leading eigenvectors of the transfer matrix of the strips by the matrix product states (MPS) with the same quantum number G_v in both bra and ket. The ground state energies as a function of the variational parameter c for both sectors $|\Psi(\pm)|_{e/o}$ of the strips with $N_v = 10, \cdots, 18$ are presented in Fig. 4(b). The best variational energy for $J_2 = 0.5J_1$ is at $c = 0.35$, which is in good consistency with the case of finite perimeter cylinders.

The variational energies of the even and odd sectors at the optimum parameter $c = 0.35$ as a function of inverse width $1/N_v$ are shown in Fig. 5(a,b), with cylinders of size $N_v = 4, 6, 8$ and strips up to $N_v = 36$. A linear regression is applied to the even sector of the strips and a thermodynamic limit of $E_\infty = -0.48612(2)$ is obtained. This energy is competing on the third decimal digit to the best variational estimate of $E_\infty = -0.4943(7)$ with a $D = 9$ PEPS [13], let alone the fact that here we vary only one variational parameter in a $D = 3$ PEPS. A conjecture about the ground state energies of the gapless and gaped spin liquid states is that the energy splittings between different topological sectors become exponentially small with the system size [23–25]. This conjecture is verified in Fig. 5(c,d) presenting on semi-log scales the energy difference between all sectors and E_∞ for cylinders and between the two existing energy sectors for strips.

FIG. 5: Ground state energies at $c = 0.35$ as a function of $1/N_v$ for all topological sectors in (a) cylinders and (b) strips. The extrapolated ground state energy from the even sector of strips is $E_\infty = -0.48612(2)$. The ground state energy splitting between the lowest energy sector and other sectors as a function of N_v for (c) cylinders and (d) strips. The splitting vanishes exponentially with size N_v.

Correlation functions and entanglement entropy – We define the spin and dimer correlation functions as the ground state expectation values $C(r) = \langle S_0 \cdot S_r \rangle$ and $D^*(r) = \langle (S_0 \cdot S_1)(S_r \cdot S_{r+1}) \rangle - \langle S_0 \cdot S_1 \rangle \langle S_r \cdot S_{r+1} \rangle$. Fig. 6(a) plots the dimer correlation functions on a cylinder width $N_v = 8$ for all topological sectors at the optimal parameter $c = 0.35$. The odd sectors have very slowly decaying dimer correlations due to an odd number of spinons sitting on the boundaries, thus the system effectively becomes an odd-width cylinder and the Majumdar-Ghosh kind of degeneracy emerges. We can eliminate the boundary effect by setting the system on a torus and carrying a variational MC simulation for PEPSs [22]. We found the dimer correlation function exhibits a power law
decay \(D^*(r) \sim \frac{(-1)^r}{r} \) with \(a = 1.4 \), as shown in Fig. 6(c). In contrast, the decay of the spin correlation function for all sectors on a cylinder or on a torus remains exponential with a correlation length \(\xi_s \approx 1.1 \), as evidenced in Fig. 6(b,d). Fig. 7 shows the Renyi entropy \(S_2(L) \) of an area \(L \times L \) on a \(2L \times L \) torus for size \(L = 4, 6, 10, \ldots, 20 \). The fitted line of \(aL - \frac{1}{2} \ln L + b \) reflects the \(\ln L \) correction from the oriented string picture (see Appendix). The expected logarithmic correction has been discussed in other well known gapless systems [26–28]. The simulation is done via MC sampling of the RVB configuration [29]. Finally, we also would like to point out that the logarithmic correction is very hard to be detected on small system size. If we fit \(S_2 \) with a form \(aL + b \) on small system size, we find that the constant \(b = -0.68(1) \), which is very close to \(-\ln 2 \). Such an observation implies that the observed \(-\ln 2\) constant in DMRG calculation [12] is insufficient to rule out the possibility of gapless spin liquid ground state for \(J_1 - J_2 \) Heisenberg model on square lattice.

Conclusion and outlook – We constructed a class of projected entangled pair states which exactly represent general RVB wavefunctions with all bond length contributions. Upon choosing an energetically preferred RVB pattern, we are able to build a one-parameter manifold of variational RVB \(D = 3 \) PEPSs which preserve all lattice symmetries. Minimization of the variational energy for the frustrated spin 1/2 \(J_1 - J_2 \) Antiferromagnetic (AF) Heisenberg model on the square lattice yields, at \(J_2 = 0.5J_1 \), an energy \(E_{\infty} = -0.48612(2) \) per site in the thermodynamic limit. In the case of a cylinder geometry, four orthogonal topological states were identified, namely the even-flux and odd-flux states with even and odd number of spinons on the boundary. We found the dimer correlation function decays algebraically while the spin correlation function still decays exponentially. The entanglement entropy scaling reveals \(\ln L \) correction to the area law. Both features point towards the gapless spin liquid nature of our constructed RVB wavefunction.

The PEPSs construction of the general RVB states can be applied to other bipartite and non-bipartite lattices, where the Schwinger boson spin liquid states under the projective symmetry group (PSG) analysis have been found [15–19, 30], but for which thermodynamic energies and correlation functions are still unknown due to a negative sign problem in the valence bond MC simulations. Within the PEPS formalism all of these can be easily studied. Our PEPS construction of the RVB states can be further generalized to accommodate more complicated pairing pattern which can improve further the ground state energy although possibly requiring a larger bond dimension.

Acknowledgment – We would also like to thank N. Schuch, I. Cirac, D. Perez-Garcia and O. Motrunich for stimulating discussions. This project is supported by the EU Strep project QUEVADIS, the ERC grant QUERG, the FWF SFB grants FoQuS and ViCoM, and the NQPTP ANR-0406-01 grant (French Research Council). XGW is supported by NSF Grant No. DMR-1005541, NSFC 11074140, and NSFC 11274192. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research. The computational results presented have been achieved using the Vienna Scientific Cluster (VSC) and the CALMIP Hyperion Cluster (Toulouse).

