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We investigate the transport properties of a correlated metal within dynamical mean field theory.
Canonical Fermi liquid behavior emerges only below a very low temperature scale TFL. Surprisingly
the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher
temperatures and crosses over to saturated behavior around a temperature scale Tsat. We identify
these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi liquid transport
above TFL, in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature
dependent band dispersion. We derive simple expressions for resistivity, Hall angle, thermoelectric
power and Nernst coefficient in terms of a temperature dependent renormalized band structure and
the quasiparticle scattering rate. We discuss possible tests of the DMFT picture of transport using
ac measurements.
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Fermi liquids [1] are good conductors. Quasiparticles
(QP) with a mean free path much longer than their wave-
length are responsible for the electric transport, and the
resistivity vanishes quadratically at low temperatures.
Landau theory is very robust and when reformulated in
terms of a transport kinetic equation, it can be used to
describe situations where Landau QPs are strictly speak-
ing not well defined, namely when the QP scattering
rate is comparable to their energy, such as the electron-
phonon coupled system above the Debye temperature [2].
The metallic state of many strongly correlated mate-

rials is not described by Landau theory in a wide range
of temperatures. Quadratic temperature dependence of
resistivity occurs in a very narrow or vanishing range
of temperatures. The interpretation of the resistivity in
terms of the standard model of transport which is based
on QPs is problematic since it leads to mean free paths
shorter than the (QP) DeBroglie wavelength as stressed
by Emery and Kivelson [3]. The transport properties of
these “bad metals” thus requires a novel framework for
their theoretical interpretation.
Dynamical mean field theory (DMFT) [4], provides

a non-perturbative framework for the description of
strongly correlated materials. It links observable quan-
tities to a simpler, but still interacting, reference system
(a quantum impurity in a self-consistent medium) rather
than to a free electron system, hence it gives access to
physical regimes outside the scope of Landau theory.
In a broad temperature range, the single-site DMFT

description of the one band Hubbard model at large U
and finite doping, results in transport and optical prop-
erties with anomalous temperature dependence [5–12],
reminiscent of those observed in bad metals. Corre-
sponding studies of half filled metallic systems [13–16]
also reveal bad metallic behavior in a narrower temper-
ature region since at high temperatures the resistivity is
insulating like.
Landau QPs only emerge below an extremely low tem-

perature, TFL, which is much lower than the renormal-
ized kinetic energy or Brinkman-Rice scale TBR ∼ δW

with δ the doping level and W the bare bandwidth. TBR

is the natural scale for the variation of physical quanti-
ties with doping at zero temperature [7, 17]. A recent
comprehensive DMFT study of the Hubbard model with
a semicircular bare density of states found that the trans-
port properties above TFL are described in terms of re-
silient QPs with a strong particle-hole asymmetry [11].
This asymmetry arises from the asymmetric pole struc-
ture in the self energy characterizing the proximity to the
Mott insulator [18].
In this Letter we investigate the problem of bad metal

transport. By expressing the DMFT transport coeffi-
cients in terms of QP quantities we find several surpris-
ing results: a) the QP scattering rate has a quadratic
behavior for temperature much larger than TFL and
crosses over to a saturated behavior around Tsat. b) The
temperature dependence of the transport coefficients is
anomalous (in the sense that it does not reflect the T
dependence of the QP scattering rate) and arises from
the temperature dependent changes of the QP disper-
sion near the Fermi level. c) The temperature depen-
dence of the QP dispersion affects differently the diago-
nal and off-diagonal charge and thermal transport co-
efficients but the Mott relation [19, 20] is valid when
TFL < T < Tsat/2.
We study the one-band Hubbard Hamiltonian on the

two-dimensional square lattice with nearest neighbor
hopping.

H = −t
∑

〈ij〉,σ

c†iσcjσ + U
∑

i

c†i↑ci↑c
†
i↓ci↓. (1)

We set the full bare bandwidth W = 8t to W = 1 as the
unit of energy and temperature, and present results for
U/W = 1.75, for which the system is a Mott insulator
at half-filling. The doping level of the metallic state is
fixed at δ = 15% (n = 0.85). We use continuous time
quantum Monte Carlo method (CTQMC) [21] and the
implementation of ref. [22] to solve the auxiliary impu-
rity problem. We use Padé approximants to analytically
continue the self energy.
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FIG. 1: Spectral function Ak(ω) along Γ − X − M − Γ in
Brillioun zone at (a) T = 0.0075, (b) T = 0.025, (c) T = 0.1
and (d) T = 0.125. (e) Local density of states. (f) Roots of
Eq. 3 at different temperatures.

The one-electron spectral function is defined as

Ak(ω) = −
1

π

ℑΣ(ω)

(ω + µ− ǫk −ℜΣ(ω))2 + ℑΣ(ω)2
, (2)

in terms of the bare band dispersion ǫk = − 1
4 (cos(kx) +

cos(ky)) and the self energy Σ(ω). Ak(ω) at different
temperatures are plotted in Fig. 1 (a-d).
Several characteristics of the evolution of Ak(ω) with

temperature are important. The solutions of the follow-
ing equation,

ω + µ(T )− ǫk −ℜΣ(ω, T ) = 0, (3)

faithfully reproduce the location of the peaks in Ak(ω)
and how they evolve with temperature (Fig. 1(f)). We
do not describe in the following the upper Hubbard band
at positive energies of order U .
There are two distinct temperature regimes separated

by a crossover scale Tsat ≃ 2TBR/3 = 0.1, which also
sets the saturation scale of QP scattering rate as will be
explained later. Above Tsat, say at T = 0.125, Ak(ω)
has one peak, i.e., Eq. 3 has only one root for each k

and displays a continuous dispersion over the whole Bril-
lioun zone. Below Tsat, Eq. 3 can have multiple roots.
The high temperature band breaks into two parts, which
together with the upper Hubbard band form the char-
acteristic DMFT three-peak structure of local density of

states (LDOS, Fig. 1(e)). The breakup of these bands
also leads to the separation of the optical spectrum into
a Drude peak and a mid-infrared feature, characteristic
of many correlated systems, which provided the earliest
experimental tests of the DMFT picture of correlated
materials [5, 6, 13, 14] .
There is always a dispersive QP feature in a ∼ kBT

energy window of the Fermi energy. ω∗
k
denotes the root

of Eq. 3 closest to the Fermi level for a given k. It evolves
continously with temperature from zero up to very high
temperatures where there is no sharp peak in the LDOS
(Fig. 1(e)). The dispersive excitations evolve continously
from strongly renormalized QPs located near the Lut-
tinger Fermi surface with Fermi crossings around the X
point and on the Γ−M line for T ≪ Tsat (Fig. 1(a-b)),
to holes in the lower Hubbard band (located near the
M point) (Fig. 1(d)) for T ≫ Tsat, as the spin degrees
of freedom gradually unbind from the charge, with in-
creasing temperature. The QP velocity is nearly temper-
ature independent only below TFL and above Tsat. The
mass enhancement (1/Z), decreases with increasing tem-
perature, from a large value ∼ 5 below TFL (Fig. 1(a))
to a value ∼ 1.5 ≃ (1 − n/2)−1 at high temperatures
(Fig. 1(d)).
We now turn to the transport properties and focus on

the electric current induced by electric fields and thermal
gradients.

Je = σ̄0 ·E− σ̄1 · ∇T. (4)

σ̄0/1 is charge/thermal conductivity matrix. Several
quantities of interest are resistivity(ρ), Hall angle(θH),
Seebeck coefficient(S), and Nernst coefficient(ν) [20].
They are representative measures of longitudi-
nal/transverse and magneto/thermo-electric transport
properties and can be expressed in terms of elements of
conductivity matrices,

ρ =
1

σ0
xx

, tan θH = −
σ0
yx

σ0
xx

,

S = −
σ1
xx

σ0
xx

, ν = −
1

B

(

σ1
yx

σ0
xx

−
σ1
xxσ

0
yx

(σ0
xx)

2

)

. (5)

Within the DMFT treatment of the one-band Hubbard
model, current vertex corrections vanish and the trans-
port properties can be interpreted directly in terms of
one-electron spectral function [5, 8, 9],

σα
xx = 2π

∑

k

Φxx
k

∫

dω

(

−
∂f(ω)

∂ω

)

(ω

T

)α

A2
k
(ω),

σα
yx

B
=

4π2

3

∑

k

Φyx
k

∫

dω

(

−
∂f(ω)

∂ω

)

(ω

T

)α

A3
k
(ω),

(6)

with α = 0 or 1 for charge or thermal conductivity. We
consider the limit of weak magnetic field, hence the off-
diagonal conductivities are proportional to B. Φxx

k
= ǫx2

k
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and Φyx
k

= (ǫy
k
)2ǫxx

k
− ǫy

k
ǫx
k
ǫyx
k

are transport functions in
terms of bare band dispersion ǫk and its derivatives. The
derivatives are denoted by corresponding superscripts,
ǫα
k
= ∂ǫk/∂kα.
To recast Eqs. 6 in terms of QP, we linearize Eq. 3 at

ω = ω∗
k
and define Zk = (1− ∂ℜΣ(ω)

∂ω )−1|ω=ω∗

k
. Then the

low energy part of the one-electron Green’s function can
be approximated as

Gk(ω) ≃
Zk

(ω − ω∗
k
) + iΓ∗

k

. (7)

Thus Zk is the QP renormalization factor (or QP weight)
and Γ∗

k
= −ZkℑΣ(ω

∗
k
) is the QP scattering rate.

Then the integrals in Eqs. 6 can be performed analyt-
ically and lead to

σα
xx ≃

∑

k

(

−
∂f(ω)

∂ω

)

ω∗

k

Φ∗xx
k

(

ω∗
k

T

)α

τ∗k ,

σα
yx

B
≃

1

2

∑

k

(

−
∂f(ω)

∂ω

)

ω∗

k

Φ∗yx
k

(

ω∗
k

T

)α

(τ∗
k
)2. (8)

τ∗
k

= (Γ∗
k
)−1 is the QP lifetime. Transport functions

are renormalized by Zk. Φ∗xx
k

= (ǫ∗x
k
)2 and Φ∗yx

k
=

(ǫ∗y
k
)2ǫ∗xx

k
− ǫ∗y

k
ǫ∗x
k
ǫ∗yx
k

, with ǫ
∗α(β)
k

= Zkǫ
α(β)
k

(α, β =
x, y).
This reformulation leads to a transparent interpreta-

tion in terms of QPs with temperature dependent dis-
persion ω∗

k
. Eqs. 8 has a form similar to the solution of

the kinetic equations from Boltzmann theory [23]. The
essential difference from the Prange-Kadanoff treatment
of the electron-phonon problem [2] is the strong temper-
ature dependence of the QP dispersion brought in by Zk.
First we validate the simplified description of trans-

port, Eqs. 8 (“QP approx.”), by benchmarking it against
the results of the exact DMFT expressions, Eqs. 6 (“ex-
act exp.”), for the resistivity, Hall angle, Seebeck, and
Nernst coefficients. The quantitative agreement between
Eqs. 8 and Eqs. 6 is evident, as shown in Fig. 2(a-d). The
QP approximation faithfully reproduces the results of all
transport quantities over the whole temperature range,
extending to temperatures well above Tsat.
Fig. 3(a) shows the QP scattering rate on Fermi sur-

face, i.e., Γ∗
kF

with ω∗
kF

= 0 (For later use we also write

τ∗
kF

= (Γ∗
kF

)−1 as the QP lifetime and ZkF
as the renor-

malization factor at Fermi surface). Tsat demarcates
the non-monotonic temperature dependence of Γ∗

kF
. Be-

low Tsat, Γ
∗
kF

increases and reaches maximum at Tsat.
Above Tsat, Γ∗

kF
decreases very slowly and eventually

approaches to a value moderately smaller than the maxi-
mum. This confirms that Tsat characterizes the crossover
between two distinct scattering behaviors. The inset of
Fig. 3(a) shows estimated values of (kF l

∗)−1 with kF an
estimation of the average Fermi momentum by assum-
ing a circular Fermi surface containing (1 − δ)/2 elec-
trons per spin and with l∗ = v∗

kF
τ∗
kF

the QP mean free

path, where v∗
kF

=
√

〈v2
k
〉 with 〈. . . 〉 averaging over the

Fermi level. At low temperatures, (kF l
∗)−1 increases

with temperature, as expected in a good metal, and
crosses over to a much slower increase, or saturated be-
havior around Tsat/2. Above Tsat/2, (kF l

∗)−1 ≃ 0.5,
and does not exceed the Mott-Ioffe-Regel (MIR) bound,
which states that (kF l

∗)−1 < 1 in a metal. The QPs
behave as expected in Boltzmann transport theory in
the full temperature range, reaching the non-degenerate
limit at T ≫ Tsat. Notice that above TFL, ℑΣ(0) is
not quadratic in temperature, only Γ∗

kF
= −ZkF

ℑΣ(0)
is quadratic.
The anomalies in the transport properties are the re-

sult of the strong temperature dependence of the renor-
malized dispersion. This is best understood by means
of a general Sommerfeld expansion of Eqs. 8, which is
explained in Supplementary Material and works well be-
low Tsat/2. For this purpose we define Φ∗xx/yx(ǫ) =
∑

k
Φ

∗xx/yx
k

δ(ǫ− ω∗
k
) and the energy dependent QP life-

time τ∗(ǫ) = τ∗
k

when ǫ = ω∗
k
, with scattering rate

Γ∗(ǫ) = (τ∗(ǫ))−1. For |ǫ| . T , Φ∗xx/yx(ǫ) is expanded
to the linear order in ǫ. To keep the asymmetry in Γ∗(ǫ),
which is important for the thermoelectric transport, we
expand Γ∗(ǫ) to cubic order of ǫ, and treat the linear and
cubic order as corrections to the zeroth and quadratic
terms, which are dominant in the Fermi liquid regime
at low temperatures. The insets in Fig. 2 compare the
estimation using this expansion (purple dots) and the re-
sults of the full expressions (black dots). The agreement
is evident and the expansion quantitatively captures the
variation below Tsat/2.
The inset of Fig. 2(a) shows the linearity of resis-

tivity, a typical non-Fermi liquid behavior [24], up to
Tsat/4 ≃ 0.025, as indicated by the linear fitting (blue
dashed line). Surprisingly the QP scattering rate Γ∗

kF
has

a quadratic temperature dependence also up to Tsat/4
(Fig. 3(b)). This is due to the strong temperature de-
pendence of ZkF

(Fig. 3(c)). In fact, the leading order in
the general Sommerfeld expansion gives

ρ ≃ (ZkF
Φxx(µ̃)τ∗kF

)−1, (9)

where Φxx(µ̃) =
∑

k
Φxx

k
δ(µ̃−ǫk) with µ̃ = µ−ℜΣ(0) and

we have used Φ∗xx(0) = ZkF
Φxx(µ̃). ZkF

≃ 0.1 + 12T
for TFL < T < Tsat/4, leads to the quasilinear resistivity
and also affects all other transport coeffecients in Eqs. 8.
The temperature dependence of ZkF

becomes negligible
only below the Fermi liquid temperature TFL ≃ Tsat/15.
Φxx(µ̃) is very weakly temperature dependent as shown
in the inset of Fig. 3(c). Above Tsat, the resistivity is
quasilinear in temperature with a slope smaller than that
below Tsat/4, while the QP scattering rate is saturated.
The general Sommerfeld expansion cannot be used at
high temperatures, but the discrepancy between the scat-
tering rate and resistivity can be traced to the variation
of µ̃ with temperature, leading to the shift of QP band
relative to the Fermi window −∂f(ω)/∂ω.
Similarly, the leading order in the Hall angle (Fig. 2(b))

is given by tan θH/B ≃ ZkF
Φyx(µ̃)τ∗

kF
/2Φxx(µ̃) and in-

dicates the sign change at T ≃ Tsat/4 is due to the sign
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FIG. 2: Transport properties. (a) Resistivity. (b) Hall angle. (c) Seebeck coefficient. (d) Nernst coefficient. “exact exp.”
are obtained using Eqs. 6. “QP approx.” are obtained using Eqs. 8. “expansion” are obtained using the general Sommerfeld
expansion detailed in Supplementary Material. The units are expressed in terms of universal constants, ~, kB , e, and in-
plane/out-of-plane lattice constant, a/c.

0 0.05 0.1 0.15 0.2
T

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

(k l*)F
-1Γ

Tsat

k F*

(a)

0 0.0004 0.0008 0.0012 0.0016
T

0

0.05

0.1

0.15

0.2

2

Γ 
 

k
(b)

F*

0 0.01 0.02 0.03 0.04
T

0

0.2

0.4

0.6

0.8

Z

0 0.01 0.02 0.03 0.04
0.39

0.4

0.41

0.42

(c)

k

TFL

Φ  (µ)xx ~

F

FIG. 3: (a) Quasiparticle scattering rate Γ∗

kF
. The inset shows the estimation of (kF l

∗)−1. (b) Γ∗

kF
as a function of T 2 for

T . Tsat/2. (c) Quasiparticle renormalization factor ZkF
for T . Tsat/2.

change in Φyx(µ̃), a consequence of the evolution of Fermi
surface from a hole-like one to an electron-like one. For
the Seebeck coefficent (Fig. 2(c)), the expansion leads to

S ≃

(

−
π2

3
T

)(

d lnΦ∗xx(0)

dǫ
+

d ln τ∗(0)

dǫ

)

. (10)

The asymmetry in scattering rate competes with the
asymmetry in the QP band structure, hence instead of
sign change, S shows non-monotonic temperature depen-
dence below Tsat/2.
The Nernst coefficient ν (Fig. 2(d)) rises steeply below

Tsat/4, and provides a good probe of the temperature
dependence of τ∗

kF
. The leading orders in the expansion

gives

ν ≃

(

−
π2

3
T

)[

τ∗kF

d

dǫ

(

Φ∗yx(0)

Φ∗xx(0)

)

+
Φ∗yx(0)

Φ∗xx(0)

dτ∗(0)

dǫ

]

.

(11)
In the square lattice near hall-filling, the asymmetry in
band structure dominates and leads to ν ∝ τ∗

kF
T ∝ 1/T .

This rise is seen in many materials [20] before ν drops
linearly in T at very low temperature [37].
Further studies should be carried out to ascertain to

which extent the DMFT description of transport ap-
plies to real materials, but the strong similarities be-
tween the experimental features revealed in the phe-
nomenological picture in ref. [24] and our results are
encouraging. AC transport measurements can be used

to extract the temperature dependence of τ∗
kF

. At
low frequency, the optical conductivity is parametrized

as [25, 26] σ(ω) =
ω∗2

opt

4π

(

−iω + 1
τ∗

opt

)−1

, with ω∗2
opt ≃

8πΦ∗xx(0) = 8πZkF
Φxx(µ̃) and τ∗opt ≃ τ∗

kF
/2. Similarly

in AC Hall effect [27], tan θH(ω)/B =
ω∗2

H

4π

(

−iω + 1
τ∗

H

)−1

follows, with ω∗2
H ≃ 4πΦ∗yx(0)

Φ∗xx(0) = 4π
ZkF

Φyx(µ̃)

Φxx(µ̃) and τ∗H ≃

τ∗
kF

/2. Frequency dependent thermoelectric measure-
ments would give additional information on the asym-
metry of the QP dispersion and scattering rate.

The extension from model Hamiltonians to the
LDA+DMFT framework is straightforward. It can be
used to separate the temperature dependence of trans-
port coefficients arising from the temperature depen-
dence of the QP band and that of the scattering rate, in
materials such as the ruthenates [28], the vanadates [29]
and the nickelates [14, 30, 31] for which the LDA+DMFT
description is known to provide an accurate zeroth order
picture of numerous properties [14]. Recent experiments
on cuprates [32] have revealed evidence for temperature
dependence of ω∗2

opt and a T 2-scattering rate over a broad
range of temperatures. These materials require cluster
DMFT studies to describe their momentum space differ-
entiation. Still, it is tempting to interpret the transport
properties in terms of QPs to provide an effective de-
scription of the transport. Indeed the QP scattering rate
computed in the t-J model in ref. [33], exhibits the sat-
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uration behavior described in this work and it would be
interesting to re-analyze the results in terms of the QPs
of the hidden Fermi liquid. Our findings are related to
two earlier theoretical proposals. Anderson introduced
the idea of a hidden Fermi liquid [34, 35], requiring ZkF

strictly vanishing at T = 0 in the normal state. Alterna-
tively, our results could be cast into the framework of the

extremely correlated Fermi liquid [36] by the temperature
dependence of the caparison function.
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