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We study the interaction of surface acoustic waves (SAWs) with a contact-based vibrational reso-
nance of 1 µm silica microspheres forming a two-dimensional granular crystal adhered to a substrate.
The laser-induced transient grating technique is used to excite SAWs and measure their dispersion.
The measured dispersion curves exhibit “avoided crossing” behavior due to the hybridization of the
SAWs with the microsphere resonance. We compare the measured dispersion curves with those pre-
dicted by our analytical model, and find excellent agreement. The approach presented can be used
to study the contact mechanics and adhesion of micro- and nanoparticles as well as the dynamics
of microscale granular crystals.
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Wave phenomena in granular media is a rich and
rapidly developing field of research [1–3]. At the heart of
this field is the Hertzian model of elastic contact between
spherical particles, in which the stiffness of the contact
depends on the applied force [4]. One type of granular
media, often referred to as “granular crystals”, consists
of close-packed, ordered arrays of elastic particles that
interact via Hertzian contact [2, 3]. Granular crystals
have been shown to support a wide range of linear and
nonlinear dynamical phenomena not encountered in con-
ventional materials, and have been suggested for various
engineering applications [2, 3].

Acoustic studies of granular media typically in-
volve macroscopic particles with dimensions of ∼ 0.1–
10 mm [1–3], whereas contact-based vibrations of mi-
croparticles with dimensions of (or under) ∼ 1 µm re-
main largely unexplored. The scale factor is significant
as a microparticle system cannot be thought of simply
as a scaled down version of a macroscale system which is
governed by the same physics. Rather, microparticles are
expected to yield qualitatively different dynamics. One
crucial factor is adhesion [5, 6], which is almost negligi-
ble on millimeter scales but significant on micron scales.
Because of adhesion, a microsphere in contact with a sub-
strate is pulled toward the latter. This results in an equi-
librium contact area and “contact resonances” with vi-
bration frequencies determined by the particle mass, the
adhesion, and the elastic properties of the particle and
substrate [7–10]. This phenomenon has been observed
experimentally in microspheres for rocking [7], axial [8],
and lateral [9, 10] vibrations. Eigenmodes correspond-
ing to free-particle vibrations have also been observed at
much higher frequencies [11].

In this letter, we study a contact resonance of micro-
spheres forming a two-dimensional granular crystal ad-
hered to a substrate using a hitherto unexplored phe-
nomenon, i.e., the interaction of contact resonances of
microparticles with surface acoustic waves (SAWs) in the
substrate. We use the laser-induced transient grating
(TG) technique [12, 13] to excite the long-wavelength

(relative to the particle size) SAWs and measure their dis-
persion. The measured dispersion curves exhibit classic
“avoided crossing” [14] behavior due to the hybridization
of the SAWs with the contact resonance of microspheres.
Such coupling between SAWs and mechanical surface os-
cillators was studied in theoretical works [15–17], and the
experimental work [18]. We analyze our measurements
using a simple model that assumes an axial contact res-
onance and yields an analytical expression for the dis-
persion relation. We find excellent agreement between
our model and the measurements using the frequency
of the contact resonance as a single fitting parameter,
and we compare our results with estimates based on the
Derjaguin-Muller-Toporov (DMT) contact model [19].
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FIG. 1: [Color online] (a) Microspheres interacting with a
SAW via contact “springs”, with notations used in the theo-
retical model. (b) Photograph of the sample. (c) Representa-
tive image of the silica microsphere monolayer. (d) Schematic
illustration of the TG setup.

Our sample is a hexagonally packed monolayer of
D = 1.08 µm diameter silica microspheres deposited on
an aluminum-coated fused silica substrate, as shown in
Fig. 1(b,c). The silica slab is 1.5 mm thick, and the
aluminum, which serves as a medium to absorb pump
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laser light, is 0.20 µm thick. To assemble the mono-
layer on the substrate, we used the “wedge-shaped cell”
convective self-assembly technique [20–22]. The result-
ing monolayer has an area of ∼ 5 mm by 10 mm, as
shown in Fig. 1(b). A representative optical image of the
monolayer packing is shown in Fig. 1(c). Although the
monolayer has a uniform distribution, defects and grains
of uniform packing are clearly present.

We use a laser-induced TG technique [12, 13] to mea-
sure the phase velocity dispersion of SAWs in our sam-
ple. The TG setup used for these experiments has been
described previously [13]. In summary, two excitation
beams derived from the same laser source (515 nm wave-
length, 60 ps pulse duration, 2.44 µJ total pulse energy
at the sample) enter the sample through the silica sub-
strate, as shown in Fig. 1(d), and are overlapped at
the aluminum layer forming a spatially periodic inter-
ference pattern. The pump spot has 500 µm diameter at
1/e2 intensity level. Absorption of the laser light by the
aluminum film induces rapid thermal expansion, which
leads to the generation of counter-propagating SAWs
with wavelength λS defined by the period of the interfer-
ence pattern. The period is controlled by a phase mask
pattern used to create the two excitation beams, by split-
ting the incident beam into +/−1 diffraction orders [12].
Switching phase mask patterns allows measurements at
multiple acoustic wavelengths.

SAW detection is accomplished using a quasi-cw probe
beam (532 nm wavelength, 10.7 mW average power at the
sample) focused at the center of the excitation pattern to
a spot of 150 µm diameter. The probe beam also enters
the sample through the silica substrate and is diffracted
by surface ripples and refractive index variations in the
substrate induced by SAWs [23]. The diffracted beam is
overlapped with the reflected reference beam (local oscil-
lator) [12, 13] and directed onto a fast avalanche photo-
diode with a 1 GHz bandwidth. The signal is recorded
using an oscilloscope and averaged over 104 repetitions.

Figure 2(a,b) shows typical signals acquired at an
acoustic wave vector magnitude k = 2π/λS = 0.46 µm−1.
Figure 2(a) shows the signal from a sample location with-
out microspheres, and Fig. 2(b) corresponds to a loca-
tion with spheres. In both cases there is a sharp initial
increase, which corresponds to the excitation pulse ar-
riving at the sample. The slowly decaying component is
due to the “thermal grating” associated with the temper-
ature profile in the sample [12, 13]. The high frequency
oscillations are due to acoustic waves.

Figure 2(c,d) shows the Fourier spectra of acoustic
oscillations corresponding to the signals in Fig. 2(a,b)
[22]. In the off-spheres case there are two clear peaks,
which correspond to a Rayleigh SAW (the low frequency
peak) and a longitudinal wave in the substrate [24]. Fig-
ure 3 shows the acoustic dispersion curves. For the off-
spheres case, we see linear dispersion curves that agree
well with lines corresponding to the longitudinal and
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FIG. 2: [Color online] Normalized signal (a) off-spheres, and
(b) on-spheres, for k = 0.46 µm−1. The acquired signal S
is normalized by the maximum signal amplitude S0. Fourier
transform (FT) magnitudes corresponding to the signals in
(a) and (b), plotted in log scale (c) and linear scale (d). The
black curve corresponds to the signal in (a), and the red curve
to the signal in (b). The markers denote the identified peaks,
which are plotted in Fig. 3 using the same markers.

Rayleigh wave velocities in fused silica. We used typical
wave speeds for fused silica of cL = 5968 m/s (longitudi-
nal) and cT = 3764 m/s (transverse) [25], and calculated
the Rayleigh wave velocity cR = 3409 m/s by numeri-
cally solving the Rayleigh equation [26]. More accurate
calculations accounting for the aluminum layer [22, 26]
showed that the reduction in the Rayleigh wave velocity
due to the aluminum layer does not exceed 1.4%.

The on-spheres case yields starkly different behavior
from the off-spheres case, as can be seen by comparing
the signals in Fig. 2(a,b). The comparison of the spectra
in Fig. 2(c) shows that the longitudinal peak is unaf-
fected by the presence of the spheres whereas the SAW
peak is split in two. The on-spheres dispersion curves
in Fig. 3 reveal a classic “avoided crossing” between the
Rayleigh wave and a local microsphere resonance. The
lower branch starts as a Rayleigh wave at low wave vec-
tor magnitudes and approaches a horizontal asymptote
corresponding to the resonance frequency. The upper
branch is close to the Rayleigh wave at high wave vec-
tor magnitudes; in the “avoided crossing” region it de-
viates from the Rayleigh line and stops at the threshold
corresponding to the transverse acoustic velocity of the
substrate.

To describe SAW propagation in our system of mi-
crospheres coupled to an elastic substrate, we adapt an
approach developed in the theoretical works [15–17]. As
shown schematically in Fig. 1(a), we model the substrate
as an elastic half-space (z ≤ 0), where the surface of the
halfspace is connected to an array of linear surface oscilla-
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FIG. 3: [Color online] Dispersion relations. Red and black
markers are the measured frequency peaks for the on- and off-
spheres cases, respectivly. The solid red line is the dispersion
calculated using our model. Also shown are lines correspond-
ing to longitudinal, transverse, and Rayleigh waves in fused
silica, and a horizontal line corresponding to the microsphere
contact resonance frequency.

tors, with mass m and linearized normal contact stiffness
K2, which represent the microspheres connected to the
substrate via axial “contact springs”. We calculate the

microsphere mass m using a density of ρs = 2.0 g/cm3

as provided by the manufacturer (Corpuscular, Inc.).

We approximate the microspheres as point-masses, as
the lowest spheroidal resonance of the microspheres, f2 =
2.9 GHz [27], is much greater than the frequencies ob-
served in the experiment. The equation of motion for the
surface oscillator can be written as mZ̈+K2(Z−uz,0) =
0, where uz,0 is the displacement of the substrate sur-
face, and Z is the displacement of the oscillator relative
to the surface. The particles exert a vertical force on the
substrate, leading to the following boundary conditions
at the surface z = 0:

σzz =
K2(Z − uz,0)

A
σxz = 0, (1)

where σzz and σxz are components of the elastic stress

tensor [26], and A =
√

3D2

2 is the area of a primitive unit
cell in our hexagonally packed monolayer.

Since the acoustic wavelength is much larger than the
sphere size, in Eq. 1 we use an effective medium approach,
and approximate the average normal stress at the surface
as the force exerted by the microsphere “spring” divided
by the area of a unit cell. We follow the standard pro-
cedure for the derivation of the Rayleigh wave equation
[26], but use Eq. 1 instead of stress-free boundary con-
ditions to obtain the following dispersion relation for the
SAWs in our coupled oscillator system [22]:
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k2c2L
)1/2

k3c4T
, (2)

where ω0 = 2πf0 =
√

K2/m is the angular frequency of
the contact resonance, and ρ2 = 2.2 g/cm3 [28] is the
density of the silica substrate. On the left-hand side of
Eq. 2, the term in square brackets is familiar from the
Rayleigh equation, and the term in the parentheses de-
scribes the resonance of the oscillators. The right-hand
side of Eq. 2 is responsible for the coupling between the
Rayleigh waves and the oscillators; if it is made to vanish
(for instance by assuming a vanishing areal densitym/A),
then the oscillators and SAWs in the substrate are effec-
tively decoupled. We also see that A and ρ2 relate to
the coupling strength, K2 relates to the frequency of the
avoided crossing through ω0, and m relates to both.

By taking the frequency of the contact resonance as a
fitting parameter, and using least squares minimization
between the numerical solution of Eq. 2 and the measured
dispersion, we find f0 = 215 MHz. The fitted resonant
frequency is plotted as the blue dashed line in Fig. 3,
and gives a contact stiffness of K2 = 2.7 kN/m. We plot

the numerical dispersion curve from our fitting as the red
solid line in Fig. 3.

Any real solution of Eq. 2 must yield the phase ve-
locity ω/k smaller than cT , otherwise at least one of
the square root terms becomes imaginary. Therefore,
the calculated upper dispersion branch terminates at the
threshold ω = cTk, in agreement with the experiment.
In some cases leaky wave solutions with complex ω can
be found above the threshold [17], however we did not in-
vestigate complex solutions since in our experiment the
upper branch peak disappeared past the threshold.

Using the oscillator equation of motion, we estimated
the relative displacements (and phase) of the micro-
spheres and the surface for various limiting cases [22],
as is shown in Fig. 3. In the flat dispersion region of the
lower branch, there is predominantly sphere oscillation
with very small surface displacements. Indeed, our exper-
imental data show that the amplitude of the correspond-
ing peak becomes progressively smaller compared to the
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Rayleigh-like upper branch as the wave vector magni-
tude is increased [22]. This is supported by measure-
ments taken from the front side, which show the opposite
trend due to signal contributions from the spheres [22].
Because of our detection mechanism, the dominance of
lower branch in the front-side measurements also sug-
gests that we are observing sphere motion normal to the
surface.

We estimate the frequency of the axial contact reso-
nance (and the contact stiffness) of the microspheres us-
ing the DMT contact model [19, 22], and compare with
the resonant frequency obtained from the measured data.
The DMT model describes the contact between an elastic
sphere and a flat substrate under the presence of adhe-
sive forces. For small displacements, the full DMT model
can be approximated as [19]:

F = KR1/2α3/2
− 2πwR, (3)

where F is a force applied to the sphere, α is the dis-
placement of the center of the sphere towards the sub-
strate, w = 0.094 J/m2 is the work of adhesion be-
tween silica and alumina (as the aluminum surface is
normally oxidized) [22], R is the effective microsphere
radius of contact (R = D/2 for a sphere on a flat sub-

strate [4]), and K = (34 (
1−ν2

s

Es
+

1−ν2

1

E1

))−1 is the the effec-
tive modulus, where the aluminum has elastic modulus
E1 = 62 GPa and Poisson’s ratio ν1 = 0.24 [29], and
the microspheres have elastic modulus Es = 73 GPa and
Poisson’s ratio νs = 0.17 [30]. Using Eq. 3, we calcu-

late the equilibrium displacement α0 = (2πwR1/2

K )2/3 =
0.44 nm, the linearized stiffness around the equilibrium
point K2,DMT = 3

2 (2πwR
2K2)1/3 = 1.1 kN/m, and

f0,DMT = 1
2π

√

K2,DMT /m = 140 MHz. Below the ax-
ial contact resonance, a lateral mode is also predicted

fl =
(Rα0)

1/4

πm1/2 ( (2−vs)(1+vs)
Es

+ (2−v1)(1+v1)
E1

)−1/2 [10], where
for our parameters fl = 0.9f0,DMT , however front side
measurements suggest out-of-plane sphere motion. A

rocking mode is also predicted frock = 1
2π

1
R3/2

√

45w
4ρs

=

10 MHz [7], however this is significantly below our mea-
sured acoustic frequency range. The discrepancy between
the estimated and the measured values of f0 may be
caused by uncertainties in the contact and adhesion mod-
els. For instance, a greater work of adhesion than pre-
dicted could result in higher contact stiffnesses and reso-
nant frequencies. We note that the work of adhesion can
be determined from the measured resonant frequency us-
ing a contact model. Challenges in application of DMT to
real nanoscale contacts have been underscored by studies
in atomic force microscopy [5, 31]. Typical adhesion stud-
ies relying on measuring a pull-off force provide limited
information for verification of adhesion theories [5, 7].
Our experiment provides a direct pathway to the contact
stiffness, and thus offers a promising tool for studying
adhesion and contact mechanics.

Comparing on-and off spheres cases, we see broader
peaks in Fig. 2(d) and faster acoustic signal decay in
Fig. 2(a) for the on-spheres case. In the off-spheres case,
the acoustic signal decays as the SAW wavepacket leaves
the probe spot [32]. In the on-spheres case the group
velocity is lower, yet the decay time is shorter, which in-
dicates additional attenuation. One possible mechanism
is scattering due to the spheres. A single oscillator on
a halfspace will radiate energy into the substrate while
a collective mode of a periodic array with ω < cTk will
not [17, 32]. In our case, disorder may lead to scatter-
ing and radiation into the bulk. In the flat region of
the lower dispersion branch, the peak width may also
be determined by inhomogeneous broadening caused by
sphere-to-sphere contact stiffness variation. Peak broad-
ening may also be caused by anharmonicity, but we esti-
mate sphere displacements in the linear regime [22], and
no anharmonic effects are observed.

We have seen that an avoided crossing between the
Rayleigh wave and contact resonance of the spheres oc-
curs at wavelengths much larger than the size of the unit
cell and is well described by the effective medium ap-
proximation. Thus our structure belongs to a class of
“locally resonant metamaterials”, for which interesting
effects have been observed on the macroscale [33, 34].
We expect the effective medium model to break down at
shorter wavelengths where phononic crystal effects should
be seen [35]. Furthermore, our model treats the spheres
as independent oscillators that interact through the elas-
tic substrate but not directly. Although the spheres are
closed-packed, the model describes the data well. We
believe that this is, again, due to the fact that the acous-
tic wavelength is large compared to the size of the unit
cell [15]. At shorter wavelengths we expect to see rich dy-
namics due to interaction between the spheres [36, 37].

In summary, we have studied the interaction of SAWs
with a contact-based resonance of microspheres forming
a two-dimensional granular crystal. The experimental
method can be used to study the adhesion and contact
mechanics of microparticles. It also enables the study
of granular crystals on the microscale. A rich array
of dynamical phenomena observed in macroscale gran-
ular crystals, and their promise for practical applica-
tions [3], suggest interesting possibilities for microscale
granular crystals. An analogy can also be made between
SAWs interacting with a microsphere contact resonance
and surface plasmon-polariton waves in a metal film in-
teracting with a localized surface plasmon resonance of
a nearby metallic nanoparticle [38]. This may lead to
acoustic analogies of some plasmonic phenomena and ap-
plications [39]. Finally, the nonlinearity of the Hertzian
contact holds promise for an application of our approach
to developing nonlinear SAW devices.
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