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Despite major importance in physics, biology, and other sciences, optical sensing of nanoscale
structures in the far-zone remains an open problem due to the fundamental diffraction limit of

resolution. We establish that the expected value of spectral variance (Σ̃2) of a far-field, diffraction-
limited microscope image can quantify the refractive-index fluctuations of a label-free, weakly scat-

tering sample at subdiffraction length scales. We report the general expression of Σ̃ for an ar-
bitrary refractive-index distribution. For an exponential refractive-index spatial correlation, we

obtain a closed-form solution of Σ̃ which is in excellent agreement with three-dimensional finite-
difference time-domain solutions of Maxwell’s equations. Sensing complex inhomogeneous media at
the nanoscale can benefit fields from material science to medical diagnostics.

Do Maxwell’s equations permit determining the nature
of 3-D subdiffractional refractive-index (RI) fluctuations
of a linear, label-free dielectric medium in the far-zone?
Recently, by capturing high spatial-frequency evanescent
waves, metamaterial-based lenses and grating-assisted
tomography have achieved a resolving power no longer
limited by the diffraction of light [1, 2]. However,
this super-resolution is confined to the transverse plane,
which limits its ability to characterize 3-D inhomoge-
neous media.

While various nonlinear techniques have been proposed
to image subdiffractional structures in 3-D [3–5], these
techniques require exogenous labeling or intrinsic fluo-
rescence, and thus only image the spatial distribution of
particular molecular species.

Currently, elastic, label-free spectroscopic microscopy
techniques are emerging that characterize the endoge-
nous properties of a medium by utilizing the spectral con-
tent of a diffraction-limited microscopic image. Exam-
ples include multiple high-precision quantitative phase
microscopy techniques [6–8], which measure the longitu-
dinal integral of RI, and hence are insensitive to lon-
gitudinal RI fluctuations. Alternatively, partial-wave
spectroscopic microscopy [9], confocal light scattering
and absorption spectroscopy [10], and spectral encoding
of spatial frequency [11] analyze the light-scattering re-
sponse of inhomogeneous materials to obtain information
of their subdiffractional structure in both lateral and lon-
gitudinal dimensions. However, the reported theory be-
hind these techniques involves strong assumptions such
as one-dimensional light transport, approximation of the
medium as solid spheres, or having a single length scale.

Here, we establish that the spectral signature of scat-
tered light in a far-zone microscope image contains suffi-
cient information to quantify the 3-D RI fluctuations of
weakly scattering media at deeply subdiffractional scales.
We report three-dimensional light transport theory for
linear, label-free weakly scattering media with an arbi-
trary form of RI distribution: continuous or discrete, ran-
dom or deterministic, statistically isotropic or not. We
consider the expected value of spectral variance (Σ̃2) of a

far-field, diffraction-limited image registered by a micro-
scope with a small numerical aperture (NA) of illumina-
tion and spectrally resolved image acquisition. We show
that Σ̃ quantifies RI fluctuations at nanometer length
scales limited only by the signal-to-noise ratio of the sys-
tem. Under the single scattering approximation, we ob-
tain an explicit expression relating Σ̃ to the statistics of
RI fluctuations inside the sample. Moreover, for the spe-
cial case of an exponential form of the RI spatial correla-
tion, we present a closed-form solution for Σ̃ and validate
it via numerical simulations of an experiment based on
rigorous 3-D finite-difference time-domain (FDTD) solu-
tions of Maxwell’s equations [12].
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FIG. 1. Sample: RI of the middle layer is random, RIs of
the top and bottom layers are constant; RI as a function
of depth shown in grey. Coherent sum of U (r) and U (s) is
detected. Reflection from the bottom of the substrate (glass
slide) is negligible as its thickness (1mm) is much larger than
the microscope’s depth of field (for most setups, .5-15 µm).

Consider a spatially-varying RI object sandwiched be-
tween two semi-infinite homogeneous media (Fig. 1).
The RIs of the three media are, from top to bottom:
n0, n1(1 + n∆(r)) (as a function of location r), and n2.
To begin with, we assume n1 = n2, approximating the
case of fixed biological media on a glass slide [13, 14].

A unit amplitude plane wave with a wavevector ki is
incident normally onto a weakly scattering sample. Un-
der the Born approximation, the field inside the sample
is uniform and has an amplitude T01 = 2n0

n0+n1
(trans-

mission Fresnel coefficient). In the far-zone, the scatter-
ing amplitude of the scalar field U (s), scattered from the
RI fluctuations n∆(r) in the direction specified by the

wavevector ko, is fs(ks) = T01

∫
k2

2πn∆(r′)e−iks·r′d3r′,
where ks = ko − ki is the scattering wavevector (inside
the sample) [15]. The scalar-wave approximation is used
here as it sufficiently describes intensity image formed
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by a microscope with a moderate NA [15]. Its further
justification by full-vector 3-D FDTD results is discussed
below.

When the sample is imaged by an epi-illumination
bright-field microscope, the back-propagating field re-
flected from the sample’s top surface, U (r), returns to
the image plane. Meanwhile, only the part of U (s) that
propagates at solid angles within the NA of the objec-
tive is collected. For a microscope with magnification M,
moderate NA (kz ≈ k), ignoring the angular dependence
of the Fresnel coefficient T10 = 2n1

n0+n1
, U (s) focused at a

point (x′, y′) in the image plane is [16]:

U
(s)
im (x′, y′, k) =

kT10

i2π|M |

x
TkNAfse

−i(kxx′+kyy
′)d
kx
k
d
ky
k

(1)
where TkNA is the microscope’s pupil function - a cone in
the spatial-frequency space with a radius kNA (Fig. 2a).
Thus, the objective performs low-pass transverse-plane
spatial frequency filtering, with the cutoff corresponding
to the spatial coherence length. Substituting fs into Eq.
1 and introducing a windowing function Tks that equals

one at k = ks and zero at k 6= ks (Fig. 2a), U
(s)
im is:

U
(s)
im (x′, y′, k) =

T10T01

i|M |

∫ ∞
−∞

kn1D(r)e−i2kzdz (2)

where r is ( x
′

M , y
′

M , z) inside the sample, and n1D is the
n∆(r) convolved (⊗) with the unitary Fourier transform
(F) of TkNATks in the transverse plane (xy, ⊥), n1D(r) =
F⊥ {TkNATks} ⊗⊥ n∆(r).

Equation 2 presents a new treatment of the Born ap-
proximation, which is here extended to include the opti-
cal imaging of a scattering object in the far-zone. Math-
ematically, Eq. 2 signifies that to describe a microscope-
generated spectrum (a 1-D signal), the 3-D problem of
light propagation can be reduced to a 1-D problem where
the RI is convolved with the Airy disk in the transverse
plane.
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FIG. 2. Spatial-frequency space with kz-axis antiparallel to
ki. (a) Cross-section of T∆ks , TkNA, and their interception,
T3D; (b) PSD of the RI fluctuation (blue) and T3D (grey)
when lc � L; and (c) lc > L.

The microscope image intensity (normalized by the im-
age of the source), is an interferogram:

I(x′, y′, k) = Γ2
01 − 2ΓI

{∫ +∞

−∞
kn1D(r)e−i2kzdz

}
(3)

where Γ01 = n0−n1

n0+n1
is Fresnel reflectance coefficient, Γ =

Γ01T01T10, I denotes “the imaginary part of”, and n1D

is zero at z /∈ (−L, 0). Here O(n2
∆) terms are neglected.

We quantify the spatial distribution of n∆ via Σ2 - the
spectral variance of the image intensity within the illu-
mination bandwidth ∆k. Since the expectation of the
spectrally averaged image intensity equals Γ2

01, Σ2(x′, y′)

is defined as Σ2(x′, y′) =
∫

∆k

(
I(x′, y′, k)− Γ2

01

)2
dk/∆k.

For convenience, we introduce a windowing function
T∆ks that is a unity at k = ks for all ki with magnitudes
within the ∆k of the system and is zero elsewhere (|ki|
between k1 and k2 in Fig. 2a). Denoting kc as the value of
the central wavenumber of illumination bandwidth inside
the sample, approximating ∆k << kc, applying the con-
volution and the Parseval’s theorems (for mathematical
details see the Supplemental Material), Σ2(x′, y′) equals:

Σ2(x′, y′) =
Γ2k2

c

∆k

∫ ∞
−∞
|F {T∆ksTkNA} ⊗ n∆(r)|2 dz (4)

Physically, T∆ks accounts for the limited bandwidth
of illumination and serves as a band-pass longitudinal
spatial-frequency filter of RI distribution with its width
related to the temporal coherence length, lτ = 2π/∆k.
The interception of the two frequency filters associated
with the spatial and temporal coherence, TkNA and T∆ks ,
signifies the frequency-space coherence volume centered
at kz = 2kc: T3D = T∆ksTkNA (Fig. 2a). Given an in-
finite bandwidth, one could reconstruct the full 3-D RI
from I(x′, y′, k). However, since ∆k and kc are finite, Σ
detects the variance of an “effective RI distribution”, i.e.
of n∆(r)⊗F {T3D} (Eq. 4).

Note that Σ2(x′, y′) is random since n∆(r) is random.
Hence, to characterize the sample statistics, we compute
its expected value, denoted as Σ̃2. Using the Wiener-
Khinchine relation, we obtain Σ̃2 from Eq. 4 as:

Σ̃2 =
Γ2k2

cL

∆k

∫
T3D

Φn∆
(k)d3k (5)

where Φn∆
= |F {n∆(r)}|2 is the power spectral density

(PSD) of n∆.
Equation 5 establishes the general quadrature-form ex-

pression for Σ̃2 for an arbitrary n∆(r). Note that while
the 3-D structure of complex inhomogeneous materials
cannot be described by a single measure of size or RI, the
Φn∆

fully quantifies the magnitude, spatial frequency,
and orientation of all RI fluctuations present within the
sample. As seen from Eq. 5, Σ̃2 measures the integral of
the tail of the PSD within T3D. Hence, as shown later,
Σ̃2 presents a monotonic measure of the width of the
PSD. When n1 6= n2, the expression for Σ̃2 has a differ-
ent pre-factor and a deterministic offset, specified in the
Supplemental Material.

We further obtain a closed-form expression for Σ̃2 for
a special case when n∆(r) has an exponential form of
spatial correlation with a variance σn∆ and correlation
distance lc. Since lc can only be defined for a random
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FIG. 3. Σ̃ dependence on lc predicted by the quadrature-form (Eq. 5) and the closed-form (Eq. 7) analytical expressions for

Σ̃ (circles and solid lines correspondingly), and by FDTD (solid lines with error bars representing standard deviation between
20 realizations of each statistical condition), calculated for (a) L=0.5µm, ∆k = 4.9µm−1, kc = 16.8µm−1, (b) L=1.5µm,
∆k = 4.9µm−1, kc = 16.8µm−1, and (c) L=2.0µm. ∆k = 11.9µm−1, kc = 18.1µm−1 (wavenumber values in inside the sample).
Data shown normalized by Γ2

01, the image intensity in the absence of RI fluctuations inside the sample.

medium with a physical size much larger than the corre-
lation distance, we define lc as the correlation distance of
an unbounded medium n∞∆ (r), and the sample as a hori-
zontal slice of n∞∆ (r) with thickness L: n∆(r) = TLn

∞
∆ (r)

where TL is a windowing function along the z -axis with
width L. The PSD of such sample is an anisotropic func-
tion of lc and L: Φn∆

(k) = |F {TL} ⊗ F {n∞∆ } |2 (Fig.

2b,c). Alternatively, Σ̃2 is found by independently com-
puting the contributions from i) scattering from within

the sample (Σ̃2
R), and ii) reflectance at z = −L (Σ̃2

L):

Σ̃2 = Σ̃2
R + Σ̃2

L (6)

Here, Σ̃L is fully described by the RI contrast at the
bottom surface, Σ̃2

L = Γ2σ2
⊥(n1D)/4, where σ2

⊥(n1D) is
the variance of the effective n1D in the transverse plane
(details shown in the Supplemental Material). Σ̃R, in
turn, is defined by Φn∞

∆
, which is independent of L when

L ? lτ . Σ̃R is obtained by integrating the PSD of an ex-
ponentially correlated n∞∆ (r) according to Eq. 5. Substi-

tuting Σ̃2
R and Σ̃2

L into Eq. 6, and introducing a unitless
size parameter x = kclc, we obtain the following closed-
form solution for Σ̃2 for an exponential form of the spatial
RI correlation:

Σ̃2 =
2Γ2σ2

n∆

π

kcLx
3NA2

(1 + x2(4 +NA2)) (1 + 4x2)
+

+Γ2σ2
n∆

(1− 1/
√

1 + (xNA)2)/4 (7)

Two assumptions were made to derive Eq. 7 from Eq.
5: 1) we approximated the top and bottom surfaces of
T3D as planes perpendicular to the kz axis, 2) we calcu-

lated Σ̃R from Φn∞
∆

, not considering the extreme case of
L � lτ . Both assumptions are not crucial from the the-
oretical perspective are there only to obtain a relatively
simple closed-form solution of Eq. 5.

To confirm these approximations, we evaluate Σ̃ pre-
dicted by the general quadrature-form expression (Eq.
5) using Matlab computing software (MathWorks Inc).

We obtain an excellent agreement between Σ̃ calculated
from Eq. 5 and the closed-form expression, Eq. 7, de-

rived from it (Fig. 3). This validates the closed-form

solution for Σ̃ for an exponential RI correlation.

We support the present theory by simulating a phys-
ical experiment using the rigorous 3-D FDTD solution
of Maxwell’s equations [17–19]. Our technique accu-
rately synthesizes microscope images of arbitrary inho-
mogeneous samples under various imaging parameters,
incorporating RI fluctuations as fine as 10nm. We syn-
thesized bright-field, plane-wave epi-illumination micro-
scope images of samples with RI distribution resembling
that of biological cells: n1 = 1.53 [13, 14], n1σn∆

= 0.05
[20]. The spatial RI correlation was set to be exponential,
and the RIs of the top and bottom media were n0 = 1
and n2 = 1.53.

Referring to Fig. 3, the Σ̃ predicted by the present the-
ory [either by the quadrature-form (Eq. 5) or the closed-
form (Eq. 7) expressions] exhibits an excellent agreement
with the FDTD-simulated experimental results over a
wide range of lc, L, spectral bandwidth and NA. The
agreement is such that the theoretically-predicted Σ̃ by
both Eqs. 5 and 7 lie within the standard deviation
bars of the FDTD results at all points tested. While the
present derivation assumes ∆k << kc, in fact, the closed-
form analytical solution is robust for ∆k that includes the
full range of visible wavelengths (Fig. 3c). This match
also justifies the employed scalar-wave approximation as
well as that the single scattering approximation applies
to RI fluctuations typical for fixed biological cells.

We next describe the lc-dependence of Σ̃ and compare
its key aspects to those of the commonly used scattering
parameters: the backscattering (σb) and the total scat-
tering (σs) cross-sections. σb manifests a non-monotonic
dependence on lc which makes the inverse problem am-
biguous [21], while σs increases steeply ∝ l3c and thus is
relatively insensitive to structural changes at small length
scales [22]. Σ̃(lc), in turn, is distinguished by three im-
portant properties illustrated in Fig. 3. First, unlike σb,
Σ̃(lc) can be monotonic. This property is apparent for
thin samples (L < 2µm, Fig. 3a,b). For thicker sam-

ples, a smaller collection NA can be chosen so that Σ̃(lc)
remains monotonic (e.g. NA=0.3 in Fig. 3c). Second,
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as opposed to σs(lc), the sensitivity of Σ̃ to changes at
smaller length scales is not obscured by changes at larger
lc. We note that the functional form of Σ̃(lc) for lc < 1/kc
can be roughly approximated as linear (r2 of linear re-

gressions for Σ̃(lc) presented in Fig. 3 range from .86 to

.91). Finally, Σ̃ is independent of lc for lc � 1/kc and

therefore Σ̃(lc) exhibits predominant sensitivity to subd-
iffraction length scales that is only limited by the signal-
to-noise ratio (SNR). The larger structures are naturally
resolved in the microscope image. In addition, while the
above mentioned scattering parameters are ∝ σ2

n∆
, Σ̃ is

∝ σn∆
(confirmed by FDTD with r2 = .99, data not

shown), which substantially improves the SNR.
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FIG. 4. 40x magnification, 0.6 NA microscope images of sam-
ples with L = 2µm were synthesized by FDTD. Bright-field
images of samples with (a) lc =20nm and (b) lc =50nm;
Σ(x′, y′)/Γ2

01 obtained from the wavelength-resolved image of
(c) the sample with lc=20nm and (d) lc =50nm; (e) RI of the
two samples as a function of z along central voxels (xo, yo),
and (f) image spectra of the corresponding pixels (x′o, y

′
o).

Results of an FDTD-simulated experiment are shown
in Fig. 4. As expected, the bright-field microscope im-
ages of samples with lc= 20 and 50nm (Fig. 4a,b) are
essentially indistinguishable. However, a drastic differ-
ence between the two samples is revealed in the respec-
tive Σ(x′, y′) images (Fig. 4c,d; where colorbar limits
match the ordinate range in Fig. 3c). Figures 4e,f il-
lustrate that a smaller amplitude of spectral oscillations
in the wavelength-resolved microscope image indicates a
higher spatial frequency of the sample’s RI fluctuations.

Recognizing that the experimental n∆(r) may not be
exponentially correlated, one may attempt to a) use the
validated approximations to obtain a closed form solution
for a different functional form of the PSD from Eq. 5; b)
represent the correlation function of n∆ as a superposi-
tion of exponentials; or c) evaluate the Eq. 5 numerically
(no explicit functional form of the PSD required for the
latter two).

We emphasize that, while Σ̃ does not probe spatial
frequencies above 2k, the subdiffraction-scale structural
alterations change the width of PSD and, therefore, the
Σ̃. Thus, Σ̃ provides a monotonic measure for the width
of the 3-D PSD of RI fluctuations with a high sensitivity
to subdiffractional length scales, without actually imag-
ing the 3-D RI.

We have established that despite the diffraction limit
of resolution, the interferometric spectroscopy of scat-
tered light can quantify the statistics of RI fluctuations
at deeply subdiffractional length scales. We have shown
that the Σ̃ obtained from an elastic, label-free, spectrally
resolved far-field microscope image quantifies RI fluctua-
tions inside weakly scattering media at length scales lim-
ited by the SNR of the detector. We have derived a
closed-form analytical solution for Σ̃ that yields results
that agree with numerical solutions of Maxwell’s equa-
tions over a wide tested range of sample and instrument
parameters. Potential applications include semiconduc-
tors, material science, biology, and medical diagnostics.
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