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We present the first Quantum Monte Carlo (QMC) calculations with chiral effective field theory
(EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion
in QMC, in nuclear forces to next-to-next-to-leading order (N2LO). We perform Auxiliary-Field
Diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density
based on local leading-order, next-to-leading order, and N2LO nucleon-nucleon interactions. Our
results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative
benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are
in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with
systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness
of different orders, and allows for matching to lattice QCD results by varying the pion mass.

PACS numbers: 21.60.Ka, 21.65.Cd, 21.30.-x, 26.60.-c, 02.70.Ss

Chiral EFT has revolutionized the theory of nuclear
forces by providing a systematic expansion for strong
interactions at low energies based on the symmetries
of quantum chromodynamics [1–3]. Chiral interactions
have been successfully employed in calculations of the
structure and reactions of light nuclei [4–7], medium-
mass nuclei [8–13], and nucleonic matter [14–20]. While
continuum QMCmethods are very precise for strongly in-
teracting systems [21, 22], including neutron matter [23–
27], and have provided pioneering calculations of light
nuclei [28, 29], QMC has not been used with chiral EFT
interactions due to nonlocalities in their present imple-
mentation in momentum space. In this Letter, we take up
this challenge and combine the accuracy of QMC meth-
ods with the systematic chiral EFT expansion. As an ap-
plication, we study the neutron matter equation of state
at nuclear densities. Neutron matter constitutes an excit-
ing system because of its connections to ultracold atoms
and its importance for the physics of neutron-rich nu-
clei, neutron stars, and supernovae. Our work opens up
nonperturbative benchmarks of nuclear matter for astro-
physics, including studies of hyperons, based on chiral
EFT, as well as the matching to the underlying theory
of QCD through lattice simulations.

First, we explain how to remove all sources of nonlo-
cality in chiral EFT interactions to N2LO and present
local nucleon-nucleon (NN) interactions at leading-order
(LO), next-to-leading order (NLO), and N2LO based on
Ref. [30]. We use the developed chiral potentials for the
first time in QMC calculations to study neutron matter
order-by-order including theoretical uncertainties. The
nonperturbative QMC results provide many-body bench-
marks and enable us to test perturbative calculations for
the same interactions.

The difficulty of handling nonlocal interactions in
QMC methods (see also Ref. [31]) results from how inter-
actions enter. Continuum QMC methods are based on a
path-integral evaluation using propagators of the form:

G(R,R′) = 〈R|e−δτ Ô|R′〉 , (1)

where R = (r1, r2 . . . rN ) is the configuration vector of
all N particles (plus spins and other quantum numbers),
δτ is a step in the imaginary-time evolution, and the op-
erator Ô takes into account the kinetic energy and the
interaction part of the Hamiltonian. The implementa-
tion of continuum QMC methods relies on being able
to separate all momentum dependences as a quadratic∑N

i=1 p
2
i term, which is the case for local interactions,

but not for general momentum-dependent, nonlocal in-
teractions (spin-orbit interactions, linear in momentum,
are manageable). In the local case, the propagator for the
momentum-dependent part is a Gaussian integral that
can be evaluated analytically, and the effects of interac-
tions only concern the positions of the particles.

Chiral EFT interactions are based on a momentum
expansion and are therefore naturally formulated in mo-
mentum space [1, 2]. To regularize interactions at high
momenta, one employs regulator functions, usually of the
form f(p) = e−(p/Λ)2n and f(p′), where p = (p1 − p2)/2
and p′ = (p′

1 − p′

2)/2 are the incoming and outgoing
relative momenta, respectively. Upon Fourier transfor-
mation, this leads to nonlocal interactions V (r, r′) al-
ready due to the choice of regulator functions. The other
sources of nonlocality in chiral EFT are due to contact
interactions that depend on the momentum transfer in
the exchange channel k = (p′ + p)/2 and due to k-
dependent parts in pion-exchange contributions beyond
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N2LO. In contrast, dependences on the momentum trans-
fer q = p′ − p are local, and lead to nonlocalities only
because of the regulator functions used.
To avoid regulator-generated nonlocalities for the long-

range pion-exchange parts of chiral EFT interactions, we
use the local coordinate-space expressions for the LO
one-pion-exchange, NLO and N2LO two-pion-exchange
interactions [32, 33] and regulate them directly in coor-

dinate space using the function flong(r) = 1− e−(r/R0)
4

,
which smoothly cuts off interactions at short distances
r < R0, while leaving the long-range parts unchanged.
So, R0 takes over the role of the cutoff Λ in momentum
space. To regularize the pion loop integrals of the two-
pion-exchange contributions, we use a spectral-function
regularization [33] with cutoff Λ̃ = 800MeV. For the
N2LO two-pion-exchange interactions we take the low-
energy constants c1 = −0.81GeV−1, c3 = −3.4GeV−1,
and c4 = 3.4GeV−1 as in the momentum-space N2LO
potential of Ref. [34].
To remove the k-dependent contact interactions to

N2LO, we make use of a freedom to choose a basis of
short-range operators in chiral EFT interactions (simi-
lar to Fierz ambiguities). At LO, one usually consid-
ers the two momentum-independent contact interactions
CS + CT σ1 · σ2. However, it is equivalent to choose
any two of the four operators 11, σ1 · σ2, τ1 · τ2, and
σ1 ·σ2 τ1 · τ2, with spin and isospin operators σi, τi, be-
cause there are only two S-wave channels due to the Pauli
principle. It is a convention in present chiral EFT inter-
actions to neglect the isospin dependence, which is then
generated from the exchange terms.
We use this freedom to keep at NLO (order Q2) an

isospin-dependent q2 contact interaction and an isospin-
dependent (σ1 ·q)(σ2 ·q) tensor part in favor of a nonlo-
cal k2 contact interaction and a nonlocal (σ1 · k)(σ2 · k)
tensor part. This leads to the following seven linearly
independent contact interactions at NLO that are local,

V NLO
short = C1 q

2 + C2 q
2
τ1 · τ2

+
(
C3 q

2 + C4 q
2
τ1 · τ2

)
σ1 · σ2

+ i
C5

2
(σ1 + σ2) · q× k

+ C6 (σ1 · q)(σ2 · q)

+ C7 (σ1 · q)(σ2 · q) τ1 · τ2 , (2)

where the only k-dependent contact interaction (C5) is a
spin-orbit potential. Because at NLO the only two pos-
sible momentum operators allowed by symmetries are q2

and k2 (or equivalently p2 + p′2 and p · p′), and simi-
larly for the tensor parts, it is thus possible to remove all
sources of nonlocality in chiral EFT to N2LO. In addi-
tion, the leading 3N forces at N2LO can be constructed as
local interactions [35, 36], but we will first focus on QMC
calculations with chiral NN interactions. The next-higher
order (Q4) NN contact interactions enter at N3LO, and
there are too many possible operators involving k, so that

TABLE I. Short-range couplings for R0 = 1.2 fm at LO, NLO,

and N2LO (with a spectral-function cutoff Λ̃ = 800 MeV) [30].
The couplings C1−7 are given in fm4 while the rest are in fm2.

LO NLO N2LO

CS −1.83406 −0.64687 1.09225

CT 0.15766 0.58128 0.24388

C1 0.18389 −0.13784

C2 0.15591 0.07001

C3 −0.13768 −0.13017

C4 0.02811 0.02089

C5 −1.99301 −1.82601

C6 0.26774 0.18700

C7 −0.25784 −0.24740

Cnn 0.05009

they cannot be traded for isospin dependence completely.
Therefore, chiral EFT interactions will contain nonlocal
terms at N3LO, but one may expect that these high-order
nonlocal parts can be treated perturbatively.
Upon Fourier transformation, these LO and NLO con-

tact interactions lead to local smeared-out delta func-
tions δR0

(r) and their derivatives, when a local regulator
flocal(q

2) is used. We implicitly define the local regu-

lator by taking δR0
(r) ∼ e−(r/R0)

4

with an exponential
regulator (with the same scale R0) similarly as for the
long-range parts. We thus have for the LO contact inter-
actions in coordinate space

∫
dq

(2π)3
CS,T flocal(q

2) eiq·r = CS,T
e−(r/R0)

4

πΓ
(
3
4

)
R3

0

, (3)

where the prefactor is determined by normalization. The
analogous local expressions involving the NLO contact in-
teractions are obtained by replacing CS,T with the seven
different operators of Eq. (2). Finally, for the range of
the scale R0 we consider R0 = 0.8 − 1.2 fm correspond-
ing to typical momentum cutoffs Λ ∼ 600 − 400MeV in
chiral EFT interactions. This follows Weinberg’s power
counting with typical cutoffs of order the breakdown scale
∼ 500MeV [1, 37]. The same local re-arrangement can
be applied to modified power counting [38], to pionless
EFT [39], to power counting that includes kF as an ex-
plicit scale [40], and when making use of off-shell ambi-
guities [41].
The low-energy couplings CS,T at LO plus C1−7 at

NLO and N2LO are fit in Ref. [30] for different R0 to
the NN phase shifts of the Nijmegen partial-wave analy-
sis [42] at laboratory energies Elab = 1, 5, 10, 25, 50, and
100MeV. The reproduction of the isospin T = 1 S-
and P-waves is shown order-by-order in Fig. 1, where the
bands are obtained by varying R0 between 0.8 − 1.2 fm
and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [42]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800 MeV).

N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab . 150MeV. This is also the case for
higher partial waves and isospin T = 0 channels, which
will be reported in a following paper. In cases where
there are deviations for higher energies (such as in the
3P2 channel of Fig. 1), the width of the band signals sig-
nificant theoretical uncertainties due to the chiral EFT
truncation at N2LO. The NLO and N2LO bands nicely
overlap (as shown for the cases in Fig. 1), or are very
close, but it is also apparent that the N2LO bands are
of a similar size as at NLO. This is because the width of
the bands both at NLO and N2LO shows effects of the
neglected order-Q4 contact interactions.
Finally, we emphasize that the newly introduced local

chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [43]).
We then apply the developed local LO, NLO, and

N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

i
1 A

ij
12 σ

j
2), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [29]. In
this Letter, we would like to simulate O(100) neutrons
to access the thermodynamic limit. We therefore turn to
the AFDMC method [44], which is capable of efficiently
handling spin-dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when ap-
plied to a wave function that is a product of single-
particle spin-isospin states, the new propagator indepen-
dently rotates the spin of every single nucleon. Using this
approach, central and tensor interactions can be fully in-
cluded in an AFDMC stochastic simulation. For the case
of neutrons, it has also been possible to include spin-orbit
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FIG. 3. (Color online) The AFDMC N2LO band of Fig. 2
in comparison to perturbative calculations of the neutron
matter energy using the same local N2LO NN interactions.
The lower (upper) limit of the AFDMC N2LO band is for
R0 = 1.2 fm (R0 = 0.8 fm), corresponding to a momentum
cutoff Λ ∼ 400 MeV (Λ ∼ 600 MeV). Perturbative results are
shown for Hartree-Fock plus second-order contributions (2nd
order) and including third-order particle-particle and hole-
hole corrections (3rd order). The bands at 2nd and 3rd order
are obtained by using a Hartree-Fock or free single-particle
spectrum. For the softer R0 = 1.2 fm interaction (narrow
purple bands), the third-order corrections are small and the
perturbative third-order energy is in excellent agreement with
the AFDMC results, while for the harder R0 = 0.8 fm interac-
tion (light red bands), the convergence is clearly slow. At low
densities, we also show the QMC (2010) results of Ref. [27, 50].

interactions in AFDMC [45].

We first studied finite-size effects and the dependence
on the Jastrow correlations in the trial Jastrow-Slater
wave function (in continuum QMC there are no dis-
cretization effects). The dependence on particle num-
ber was found to be nearly identical to that of the non-
interacting Fermi system, consistent with results using
phenomenological NN potentials [46]. Therefore, we per-
formed calculations for an optimal number of 66 parti-
cles, while also including contributions from the 26 cells
neighboring the primary simulation box. We also com-
pared the neutron matter energy at a density 0.1 fm−3

starting from no to full Jastrow correlations based on the
same R0 local chiral NN interactions versus Jastrow cor-
relations of the hard Argonne v′8 potential, as a first step
in probing the general dependence on the Jastrow term.
For the softer R0 = 1.2 fm (R0 = 0.8 fm) interactions the
changes of the energy per particle are at most 0.1MeV
(0.6MeV), which corresponds to 1% (5%) changes. This

appears to be related to the way the propagator is sam-
pled with tensor and spin-orbit interactions and will be
studied in detail in a forthcoming paper. The exact re-
sults should be independent of the trial wave function,
but we consider Jastrow correlations based on the same
R0 interactions more consistent and use these.

In Fig. 2 we present first AFDMC calculations for the
neutron matter energy with chiral EFT NN interactions
at LO, NLO, and N2LO. Our results represent nonpertur-
bative energies for neutron matter based on chiral EFT
beyond low densities. For neutrons, the AFDMC method
has been carefully benchmarked with nuclear GFMC,
which can handle beyond-central correlations as well as
release the nodal/phase constraint after convergence to
the ground state. Both have been found to have minimal
effects on the equation of state of neutrons [47, 48]. At
each order, the full interaction is used both in the prop-
agator and when evaluating observables. The lines in
Fig. 2 give the range of the energy obtained by varying
R0 between 0.8 − 1.2 fm, where the softer R0 = 1.2 fm
interactions yield the lower energies. At low densities
(low Fermi momenta), as expected the energy is well
constrained at LO, with small corrections at NLO due
to effective range effects [49, 50]. AFDMC enables us
to present results up to saturation density (and higher,
but we emphasize that the contributions of 3N forces will
become important for densities n & 0.05 fm−3 [16]). At
LO, the energy has a large uncertainty. The overlap of
the bands at different orders in Fig. 2 is excellent. In
addition, the result that the NLO and N2LO bands are
comparable is expected due to the large ci entering at
N2LO; this is similar to the phase shift bands in Fig. 1.
At the highest density studied, the size of the N2LO band
is approximately 10% of the potential energy, which will
be improved by including 3N forces [16] and going to
higher order [19]. Therefore, our first QMC results for
neutron matter exhibit a systematic order-by-order con-
vergence in chiral EFT. Given the small contributions
coming from 3N forces at intermediate density, as well as
the limited size of the systematic error bands there, our
results are a nonperturbative benchmark that can lead
to further predictions at higher density, when 3N forces
are consistently included.

Our AFDMC results provide first nonperturbative
benchmarks for chiral EFT interactions at nuclear densi-
ties. We have performed perturbative calculations follow-
ing Refs. [16, 17, 19] based on the same local N2LO NN
interactions at the Hartree-Fock level plus second-order
contributions and including third-order particle-particle
and hole-hole corrections. At each order, we give bands
obtained by using a Hartree-Fock or free single-particle
spectrum. The perturbative energies are compared in
Fig. 3 to the AFDMC N2LO results. For the softer
R0 = 1.2 fm (Λ ∼ 400MeV) interaction, the third-order
corrections are small and the perturbative third-order
energy is in excellent agreement with the AFDMC re-
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sults, while for the harder R0 = 0.8 fm (Λ ∼ 600MeV)
interaction, the convergence is clearly slow. This is the
first nonperturbative validation for neutron matter of the
possible perturbativeness of low-cutoff Λ ∼ 400MeV in-
teractions [51]. Finally, in the low-density regime, the
results in Fig. 3 match on to the QMC calculations of
Ref. [27, 50] based on central interactions that reproduce
the large neutron-neutron scattering length and the ef-
fective range physics.

In summary, we have presented the first QMC calcu-
lations with chiral EFT interactions. This was achieved
by using a freedom in chiral EFT to remove all sources
of nonlocality to N2LO. We have constructed local LO,
NLO, and N2LO NN interactions, given in operator form
times local potentials V (r) in coordinate space. The re-
production of the NN phase shifts is very good compared
to the momentum-space N2LO NN potentials of Ref. [34].
Direct application of the local chiral NN interactions in
AFDMC sets first nonperturbative benchmarks for the
neutron matter equation of state at nuclear densities.
Our results show systematic order-by-order convergence
with theoretical uncertainties and validate perturbative
calculations for the softer local NN interactions. Future
AFDMC calculations with local N2LO 3N forces will pro-
vide ab-initio constraints for nuclear density functionals
and for dense matter in astrophysics. This work paves the
way for QMC calculations with systematic chiral EFT in-
teractions for nuclei, neutron drops, and nuclear matter.
Regarding nuclear matter, a perturbative approach has
been able to predict realistic saturation properties using
parameters fit only to few-body systems [17], so future
QMC work will be key to validating this and to pro-
vide nonperturbative benchmarks. By direct matching
to lattice QCD results [52] (for example, for few-neutron
systems in a box) also varying the pion mass in chiral
EFT, the approach presented here will be able to con-
nect nuclear physics to the underlying theory of QCD.
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