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The adsorption of a colloidal particle at a fluid interface is studied theoretically and numerically,
documenting distinctly different relaxation regimes. The adsorption of a perfectly smooth particle
is characterized by a fast exponential relaxation to thermodynamic equilibrium where the interfacial
free energy reaches the global minimum. The short relaxation time is given by the ratio of viscous
damping to capillary forces. Physical and/or chemical heterogeneities, however, can result in mul-
tiple minima of the free energy giving rise to metastability. In the presence of metastable states we
observe a crossover to a slow logarithmic relaxation reminiscent of physical aging in glassy systems;
sufficiently close to equilibrium the slow relaxation becomes exponential. The long relaxation time is
determined by the Kramers escape rate from metastable states. Derived analytical expressions yield
quantitative agreement with molecular dynamics simulations and recent experimental observations.
This work provides new insights on the adsorption of colloidal particles with surface microstructure.
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The adsorption and binding of colloidal particles to
fluid interfaces is relevant to numerous natural and in-
dustrial processes. Novel technological applications in
areas that range from materials science to renewable en-
ergy [1, 2], and from food science to biomedicine [3, 4]
demand advancements in the fundamental understand-
ing of colloidal adsorption. Standard models based on
continuum thermodynamics [1, 5] predict monotonic re-
laxation to an equilibrium position where the contact an-
gle with the interface is given by Young’s law [6]. This
equilibrium position corresponds to a stable state deter-
mined by the (global) minimum of the Helmholtz free
energy. For nano/micrometer-size particles, the energy
decrease at the equilibrium state can be orders of mag-
nitude larger than the thermal energy, and thus strong
interfacial forces are expected to cause a spontaneous ad-
sorption with rapid relaxation to equilibrium.

Nevertheless, colloidal adsorption remains poorly un-
derstood for systems of great practical interest (e.g.,
functionalized particles). Fundamental issues arise when
the equilibrium contact angle is undeterminable, e.g.,
in the presence of surface heterogeneities and contact
angle hysteresis [6, 7]. Even when equilibrium con-
tact angles can be determined, it is frequently observed
that colloidal adsorption is neither fast nor spontaneous
and requires some form of external actuation (mechan-
ical/thermal/chemical) to be initiated [8–10]. Notably,
recent experimental work [10] reported a slow logarith-
mic relaxation to equilibrium after initiating the adsorp-
tion of a micrometer-size particle at a water-oil interface.
The unexpected observation was attributed to nanoscale
surface heterogeneities [10] and data were fitted with a
dynamic wetting model due to Blake and Haynes [11].

A logarithmic relaxation is reminiscent of physical
aging in glassy systems having complex energy land-
scapes and metastability [12]. These phenomena suggest
that energy barriers associated with microscale hetero-

geneities should be considered in order to describe the
slow (quasi-static) relaxation of colloidal particles at fluid
interfaces. In this Letter, we study the entire dynamics of
adsorption in the presence of metastable states caused by
local minima of the interfacial free energy. We propose a
model based on Kramers’ escape from metastable estates
[13, 14], that quantitatively describes recent experimen-
tal observations [10]. Derived expressions and numerical
simulations document different crossovers between expo-
nential and logarithmic relaxations.

Our analysis begins with the equation of motion for
a colloidal particle that straddles the interface between
two immiscible fluids [cf. Fig. 1(a)]. Assuming the par-
ticle undergoes Brownian motion, its vertical position z
is governed by a Langevin equation

mz̈ =
√

2kBTξη(t)− ξż + F (z); (1)

here m is the particle mass, kBT is the thermal energy of
the surrounding fluids, η(t) is a zero-mean unit-variance
Gaussian noise, ξ is the viscous friction coefficient, and
F (z) = −∂U/∂z is the interfacial or capillary force deter-
mined by the interfacial free energy U . In the framework
of continuum thermodynamics, the energy to form an
interface is the product of the interfacial area and corre-
sponding surface tension; γ for the fluid-fluid interface,
γp1 and γp2 for the interfaces between the particle and
each fluid. Hence, for a spherical particle of radius R
with its center at z and a sharp and flat fluid interface
at z = 0, the interfacial free energy can be cast as [5]

US(z) = 1
2K(z − zE)2 − C for |z| ≤ R, (2)

where zE is the equilibrium position, while K = 2πγ and
C = πγ(R − zE)2 are positive constants. According to
Eq. 2 the interfacial force is linear, F = −K(z−zE). Em-
ploying this linear force and neglecting small inertial ef-
fects, the solution of Eq. 1 gives an average displacement
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< z >= zE + ∆z exp(−t/TD), where ∆z = z(0) − zE is
the distance from equilibrium at t = 0 and TD = ξ/K is
the viscous decay time. For reference, we note that the
decay time is TD ∼ 0.1µs for a one-micron radius parti-
cle adsorbed at a water-oil interface. Thus, the standard
model predicts a fast exponential relaxation to equilib-
rium for a perfectly smooth particle.

A few comments are in order. For the idealized case
of a perfectly smooth and spherical particle that strad-
dles a flat interface, there is a one-to-one correspondence
between the particle position z and the observed contact
angle θ = acos(−z/R) which is constant along the per-
fectly circular contact line. According to Young’s law for
the equilibrium contact angle, cos θE = (γp2 − γp1)/γ,
the particle will straddle the two fluids at an equilib-
rium position zE = −R cos θE when |γp2 − γp1| < γ.
Both Young’s law and Eq. 2 for US(z) apply to homoge-
neous and regular contact lines. To model surface het-
erogeneities and irregular contact lines, we will neglect
the line tension term used in alternative models [15, 16]
and consider a free energy with multiple local minima.

We are interested in a simple analytical description
of microscale surface heterogeneities, as illustrated in
Fig. 1(b), that can give rise to significant energy bar-
riers ∆U > kBT . For this purpose, we introduce per-
turbations in the interfacial free energy of the form
1
2∆U sin(λθ + φ); here 1

2∆U is the amplitude of the
perturbation, l = 2π/λ is its wavelength, and φ is a
variable phase, here chosen so that U(zE) is the min-
imum. For the sake of analytical tractability we will
consider a single-mode perturbation of small wavelength,
l � R, equilibrium contact angles near neutral wetting,
70◦ . θE . 110◦, and conditions where the particle cen-
ter is close to the fluid interface, |z/R| � 1. Curvature
effects, of order O((z/R)2), can thus be neglected and
the interfacial free energy is expressed as

U(z) = US(z) + 1
2∆U sin(λz + φ) (3)

while the capillary force on the particle is

F (z) = −K(z − zE)− 1
2λ∆U cos(λz + φ). (4)

A simplified system with dynamics governed by Eq. 1
and free energy given by Eq. 3 is depicted in Fig. 1(c).
The simplified system consists of a solid surface element
with sinusoidal roughness (wavelength l, height h, and
width w) that straddles the fluid interface, and thus pro-
duces spatial oscillations of amplitude ∆U = γhw in the
interfacial free energy. Just as if the surface element
formed part of a much larger spherical particle, a linear
force drives the system toward equilibrium at z = zE ;
this force corresponds to the free energy contribution
US in Eq. 2 caused by macroscale curvature. The de-
composition of macroscale and microscale features makes
the problem tractable via molecular dynamics (MD) [17].
Simulated trajectories z(t) from individual MD realiza-
tions shown in Fig. 1(d) exhibit metastable states with a

FIG. 1. Problem description and modeled system. (a) Col-
loidal particle of radius R straddling a sharp fluid interface.
(b) Particle with microscale heterogeneities of size l � R.
A surface roughness of wavelength l, height h, and width
w ∼ h induces interfacial energy perturbations of amplitude
∆U = γhw. The system free energy is thus given by Eq. 3.
(c) Simplified system for MD simulations with free energy
given by Eq. 3. A linear “spring” force F = K∆z drives the
relaxation to equilibrium at z = zE . (d) Trajectories z(t)
from MD simulations (dotted lines) for different realizations
(LH=Kl/2kBT=7.4, ∆U/kBT=4, and ∆z=-4.5LH). Analyt-
ical expressions are plotted for comparison (see legend).

lifetime that increases as the equilibrium position zE is
approached.

According to Eqs. 3–4 there are multiple minima in the
free energy for |z− zE | < π∆U/Kl, and sufficiently close
to equilibrium the system must exhibit metastability.
The basins of attraction of each metastable state are cen-
tered at the local minima zo = zE+l(n− 1

4−φ/2π)+O(ε)
and each basin is bounded by two neighboring maxima
at z± = zo ± 1

2 l + O(ε); here n is any integer and
ε = Kl|z − zE |/π∆U is a small parameter. A Brown-
ian particle (see Fig. 1(d)) will transition, or “hop” back
and forth, between metastable states at a local rate [13]

Γ±(z) =
1

2πξ

√
∂2U(zo)

∂z2

∣∣∣∣∂2U(z±)

∂z2

∣∣∣∣ exp

(
−∆U±
kBT

)
(5)

predicted for |z − zo| < 1
2 l. The energy barriers, ∆U± =

U(z±) − U(zo), in the forward/backward direction de-
termine the Arrhenius exponential factor. The prefac-
tor employed in Eq. 5 is valid for overdamped systems
[13, 14] where ξ >

√
m |∂2U(z±)/∂z2| (here m is the

particle mass). For |z − zE | � π∆U/Kl the motion
is dominated by thermally-activated hopping, and the
ensemble-averaged speed < ż > of the particle is deter-
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mined by an ordinary differential equation

< ż >= 1
2 l(Γ+ − Γ−). (6)

A similar mathematical expression, proposed in [11] for
contact line dynamics and involving adjustable parame-
ters, has been solved in [10] to describe logarithmic be-
havior, albeit neglecting backward hopping (Γ− = 0).
We solve the full equation of motion, Eq. 6 derived via
Kramers’ theory, to obtain the average particle trajectory

〈z〉 = zE + LH log

[
1 +AH exp(−t/TH)

1−AH exp(−t/TH)

]
, (7)

which depends on three independent parameters pre-
scribed by physical variables; i.e., the characteristic hop
length LH = 2kBT/Kl, the trajectory “amplitude”
AH = tanh( 1

2∆z/LH) determined by the initial sepa-
ration from equilibrium ∆z = z(0) − zE at time t = 0,
and the characteristic hop time

TH = TD

(
LH
l

)
2π√
|Φ2 − 1|

exp

(
∆U

kBT
+

1

4

l

LH

)
. (8)

In Eq. 8 we introduced the ratio Φ = 1
2∆Uλ2/K be-

tween the free energy curvature of the modeled pertur-
bation and that of a smooth spherical particle. The
characteristic hop length, LH , and time, TH , in our
model are thus determined by two independent param-
eters, (i) the dimensionless energy barrier ∆U/kBT and
(ii) the dimensionless wavelength l/

√
kBT/γ, while the

dynamics of relaxation also depends on the dimension-
less initial condition ∆z/LH . Sufficiently far from equi-
librium when |z − zE |/LH � 1, we have 〈z〉 = zE +
LH log[ 12 t/TH + exp(∆z/LH)], which is equivalent in
form to the logarithmic expression recently employed
in Ref. [10] to fit experimental observations by treating
LH and TH as adjustable parameters. It is noteworthy
that Eq. 7 predicts a crossover to exponential relaxation,
〈z〉 = zE + ∆z exp(−t/TH), for |z − zE |/LH � 1 when
the particle is very close to equilibrium.

To verify our analytical predictions, derived under the
assumption of a quasi-static process and (overdamped)
Brownian motion [13, 14], we perform numerical simu-
lations via standard MD techniques [18]. The simulated
system, illustrated in Fig. 1(c), has three atomic species:
(i=1) fluid 1; (i = 2) fluid 2; (i = 3) the solid par-
ticle and bottom wall. As in previous work [19], our
MD simulations employ generalized Lennard-Jones po-
tentials V (r) = 4ε[(r/σ)−12 − cij(r/σ)−6], where ε is the
interaction energy, σ roughly corresponds to the atomic
diameter, r is the distance between any two atoms, and
cij = cji is the interaction coefficient between species (i, j
= 1–3). In this work we set cii = 1 for self interactions,
while in the case of cross interactions we set c12 = 0.5 for
the fluids, c13 = c23 = 0.35 for the fluids and Brownian
particle, and c13 = c23 = 0.8 for the fluids and station-
ary bottom wall. At a simulated constant temperature

FIG. 2. Mean trajectories 〈z(t)− zE〉 and relaxation regimes.
Horizontal dotted lines indicate the distance from equilibrium
∆zH = 1

2
π∆U/Kl above which hopping dominates. Mark-

ers indicate numerical simulations via MD and LD (see leg-
end). Solid lines indicate analytical predictions from Eq. 7.
Dashed lines indicate exponential relaxations at the viscous
decay time TD = ξ/K and the hop time TH from Eq. 8 (see
labels). The energy barrier is ∆U = 4kBT , and the perturba-

tion wavelength is l = 4.5
√
kBT/γ for all three initial condi-

tions: (a) ∆z/LH=-1.8; (b) ∆z/LH=-4.6; and (c) ∆z/LH=-
7.3.

T = 3ε/kB , maintained by a Nosé-Hoover thermostat,
and a number density ρ = 0.8/σ3, the fluids are macro-
scopically immiscible and the surface tension measured
across a plane interface [20] is γ ' 1.4kBT/σ

2. Solid sur-
faces exhibit neutral wetting (θE = 90◦) given the sym-
metry of fluid-solid interactions. All fluid and solid atoms
have a unit mass and are initialized on a fcc lattice (cf.
Fig. 1(c)) with spatial spacing ∆x = 3

√
1/ρ. The solid

particle and wall, carved from the fcc lattice, thus are
neutrally buoyant. The particle has length LT = 40∆x
and a nearly sinusoidal roughness (cf. Fig. 2(c)) with
wavelength l = 6∆x, height h = 2∆x, and width w = 2h
that we expect to produce the free energy perturbation
modeled in Eq. 3. In different numerical realizations,
fluid atoms are initialized with random velocities and
the particle is allowed to move in the vertical z direction
after thermal equilibrium is attained. The hop length
LH = 2kBT/Kl in MD simulations is modified by ad-
justing the “spring” stiffness K. In addition, we perform
Langevin dynamics (LD) simulations which are equiva-
lent to numerical solution of Eq. 1.

Ensemble-averaged trajectories 〈z(t)〉 are reported in
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FIG. 3. Crossover from exponential to logarithmic relax-
ation. Solid lines indicate logarithmic relaxation given by
Eq. 7. Dashed lines correspond to an exponential decay at
rate 1/TD. Dotted horizontal lines show the distance to equi-
librium ∆zH = 1

2
π∆U/Kl near which the crossover occurs.

Fig. 2 for three different displacement amplitudes |∆z| =
|z(0) − zE | ' 2–7LH . The simulated case corresponds
to an energy barrier ∆U = 4kBT and a perturbation
wavelength l = 4.5

√
kBT/γ. Very close to equilibrium

for |∆z|/LH < 2 (cf. Fig. 2(a)), the relaxation is expo-
nential at the slower rate 1/TH predicted by Eqs. 7–8.
Far from equilibrium (cf. Figs. 2(b–c)) where |z − zE | >
∆zH = 1

2π∆U/l, the relaxation is exponential at the
“fast” rate 1/TD predicted by Eqs. 1–2 for a stable sys-
tem; TD is numerically computed using large values of
K for which there is no metastability. Closer to equi-
librium where |z − zE | < ∆zH , numerical results are in
close agreement with Eq. 7 valid for quasi-static transi-
tions between metastable states.

Additional simulations for larger energy barriers
∆U = 10–20kBT , different perturbation wavelengths
l = 4–16

√
kBT/γ, and a larger separation from equi-

librium |∆z| = 32
√
kBT/γ = 20–82LH are reported in

Fig. 3. The resulting relaxation times TH in the logarith-
mic regime are extremely long and these simulations were
only feasible via LD. At a distance ∆zH = 1

2π∆U/Kl we
observe the crossover from a fast exponential relaxation,
dominated by free energy minimization, to a slow loga-
rithmic relaxation predicted by Eq. 7, dominated by the
thermally-activated escape from metastable states. The
crossover to a slow logarithmic relaxation is delayed, or
even prevented, when increasing the wavelength l of the
perturbation, cf. Figs 3(a–b), or decreasing the energy
barrier ∆U , cf. Fig. 3(a) and Fig. 3(c).

It is useful to examine how features of the energy per-
turbations and physical properties of the media deter-
mine the relaxation time TH in the logarithmic regime.

According to Eq. 8 the dimensionless hop time, TH/TD =
f(∆U/kBT, l/

√
kBT/γ) is a function of the dimension-

less amplitude and wavelength of the energy perturba-
tion. Given the functional form of Eq. 8, it is convenient
to analyze the function log(TH/TD) = P − Q, where
P = ∆U/kBT + π

4 γl
2/kBT is the dominant contribution.

One finds that not only increasing the energy barrier
∆U , but also increasing the wavelength l causes an ex-
ponential increase in the relaxation time TH . Extremely
large relaxation times TH produced by large perturbation
wavelengths l >

√
kBT/γ, indicate that the particle will

be jammed, i.e., prevented from reaching equilibrium, as
soon as the hopping motion begins. However, when the
wavelength l of the heterogeneity is large the particle can
get much closer to equilibrium before jamming because
the hopping motion begins at a much later stage when
|z − zE | ' ∆zH ∼ ∆U/Kl. Therefore, a logarithmic
relaxation on experimentally accessible time scales can
be observed provided that the energy perturbation wave-
length l <

√
kBT/γ is smaller than the root-mean-square

displacement of the fluid interface.

In order to discuss our findings let us consider a phys-
ical system of practical importance, a one-micron radius
and nearly spherical particle adsorbed at a water-oil in-
terface for which γ = 0.04N/m and kBT = 4 × 10−21J
at room temperature. The contact line perimeter is then
p ' 6 × 10−6m. We further consider an energy barrier
∆U = γ∆A = 30kBT , much smaller than the micropar-
ticle adsorption energy, caused by a surface feature of
area ∆A ' 3 nm2. If the feature is well localized only
a small portion of the contact line hops over the fea-
ture while most of its perimeter remains pinned. Hop-
ping over localized features, the contact line moves in
steps of average length ∆A/p ' 0.5× 10−12m. This dis-
tance corresponds to an energy perturbation wavelength
l ' 0.002

√
kBT/γ which results in a relaxation time

TH ' 103s. The logarithmic regime will then begin at
|z−zE | . 5×10−7m, i.e., half a radius away from the ex-
pected equilibrium. This scenario corresponds to exper-
imental conditions in Ref. [10]. Moreover, using a wave-
length l ' 0.5–1×10−12m and energy barriers ∆U ' 15–
30kBT , we find that Eq. 7 fits closely experimental data
in Ref. [10] that were qualitatively reproduced via a dif-
ferent approach (See [21, 22] for a detailed discussion).

In conclusion, we have derived analytical expressions
for colloidal adsorption via Kramers’ escape rate from
metastable states. We found that certain sizes and wave-
lengths of localized heterogeneities can give rise to physi-
cal aging and jamming (ultimately observed as static con-
tact angle hysteresis). Our analysis and numerical simu-
lations document a crossover from a fast exponential re-
laxation to slow logarithmic/exponential relaxations, at
a distance |z − zE | ∼ ∆U/γl from the expected equilib-
rium. These results demonstrate a nontrivial adsorption
dynamics that is prescribed by the microscale geometry
of the particle surface.
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