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Abstract: We demonstrate the ability of simultaneously determining a protein’s folding pathway and 
structure using a properly formulated model without prior knowledge of the native structure. Our model 
employs a natural coordinate system for describing proteins and a search strategy inspired by the obser-
vation that real proteins fold in a sequential fashion by incrementally stabilizing native-like sub-
structures or "foldons". Comparable folding pathways and structures are obtained for the twelve proteins 
recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R.O. 
Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude 
faster. We find that native-like propensities in the unfolded state do not necessarily determine the order 
of structure formation, a departure from a major conclusion of the MD study. Instead, our results sup-
port a more expansive view wherein intrinsic local structural propensities may be enhanced or overrid-
den in the folding process by environmental context. The success of our search strategy validates it as an 
expedient mechanism for folding both in silico and in vivo. 

 

PACS codes: 87.15.Cc, 87.15.hm 

Main Text: The discovery that a protein’s structure is determined by its amino acid sequence has moti-

vated efforts to replicate the folding process in silico. A successful algorithm for describing folding 

should enable predicting both the pathway and structure, two intertwined issues that generally have been 
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treated separately. All-atom molecular dynamics (MD) simulations can address both issues simulta-

neously as demonstrated by a recent success in folding a dozen small proteins 1. Although remarkable, 

the simulations require very specialized hardware and extensive amounts of computing time. Our goal is 

to develop an alternate approach that identifies basic folding principles and then integrates them into a 

rapid, accurate, and physically revealing algorithm.  

 

Our algorithm, termed TerItFix, is motivated by the manner in which real proteins fold. Growing evi-

dence suggests that proteins fold along a limited number of low-energy pathways 2-8, with the order of 

events guided by a process termed sequential stabilization (SS). Here, nascent native-like substructures 

serve as templates for the formation of additional structure through the stepwise addition of cooperative 

folding subunits or “foldons" 9-15. We explicitly implement SS by using the information gleaned from 

earlier rounds of folding simulations to guide folding in subsequent rounds. The biasing is intended to 

assist the polypeptide up and over the major free energy barrier between the unfolded and native states 

in a manner that replicates the authentic folding process 16, 17.  

Our initial folding round involves ~500 separate Monte Carlo simulated annealing (MCSA) trajectories 

that begin from a realistic denatured state ensemble (DSE)18, rather than from a state containing, for ex-

ample, biases from homology-based secondary structure predictions. The best 25% (lowest energy) 

structures are used to identify the preferred local and nonlocal interactions for each residue in the form 

of a consensus secondary structure and average inter-residue contacts and hydrogen bonds. This infor-

mation from a given round is used in the next round of ~500 trajectories to restrict the sampling of 

backbone (φ,ψ) dihedral angles and energetically bias the formation of the tertiary contacts and hydro-

gen bonds. The iterative process incrementally generates additional secondary and tertiary structure and 

hydrogen bonds as the rounds proceed, producing a series of events that may correspond to the genuine 

folding pathway.  
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We use a representation containing all backbone atoms plus the Cβ carbons, a move set involving smart 

(φ,ψ) dihedral angle distributions, and a combination of single (φ,ψ) pivots and local crankshaft 

moves17. Angles are selected from a PDB-based coil library, contingent on the chemical identity of the 

flanking residues. As secondary structure information is deduced from prior rounds, angle selection is 

correspondingly biased. Three energy functions capture the chemical properties of the different amino 

acids 16, 17, 19, 20. The first function includes a pairwise additive, distance, orientation, and secondary 

structure dependent statistical potential designed to promote the formation of chain topologies with hy-

drophobic cores. The other two statistical potentials are multi-body terms designed to capture the prop-

erties of side chain burial and hydrogen bonding.  

Figure 1 displays the most native-like structures obtained from the TerItFix simulations for the twelve 

proteins studied by Lindorff-Larsen, et al.1 The calculations for each protein take around 600 CPU hours 

on an Intel 2.6 GHz "Sandy Bridge" Xeon E5-2670 processor. Using the same processor running 

NAMD, a single 10µs MD trajectory would take around 3,000,000 CPU hours/protein. TerItFix produc-

es an average root-mean-square deviation (RMSD) from the native structure of 2.96 ± 1.33 Å for the 

centroids of the largest clusters, compared to 2.07 ± 1.31 Å for the all-atom MD simulations. TerItFix 

generates centroids with lower RMSDs for half of the proteins. By a significant 1.5 Å margin, TerIt-

Fix’s worst result is for NTL9, whereas this protein produces MD’s best result  (5.0 versus 0.5 Å for the 

cluster centroids). The crystal structure of NTL9 appears with an extra 12 residue helix which produces 

a helix-swapped dimer. Without this extra helix, the structure has an unusual, exposed hydrophobic face 

that probably contributes to TerItFix’s difficulty in obtaining a good prediction. 
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Fig. 1: Native structures produced by TerItFix. The RMSDs of the centroids of the largest clusters and 
the best structures are reported (values from the MD simulations in parentheses). Blue highlighting de-
notes the proteins where the TerItFix cluster centroids produce a lower RMSD. 
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Fig. 2: Order of structure formation in TerItFix. The fraction of structures where a residue is within 2 Å 
of the native structure (fraction native-like) for the various rounds. The black line describes predictions 
when the starting structures are generated from the DSE ensemble of structures from the statistical coil 
library 21, 22. The native state secondary structure is depicted above the graphs (helix=red, strand=blue). 

Fr
ac

ti
on

 N
at

iv
e-

lik
e 

Villin

Protein G

Chignolin

BBL

NTL9

λ repressor

BBA

Homeodomain

WW

α3D

Trp-cage

Protein B

Residue

Unfolded Round 1 Round 2 Round 3 Round 4TerItFix

More 
Native

Strand Helix



6 

 

   Unlike most free modeling algorithms for predicting structure, TerItFix does not use fragments or in-

voke any prior assumptions (or predictions from machine learning) about the protein’s secondary struc-

ture. An additional feature distinguishing TerItFix from prior approaches is the generation of a de facto 

folding pathway that is determined from the progressive appearance of structure in the multiple rounds 

of MCSA simulations. As described elsewhere, TerItFix is sensitive enough to identify the non-native 

interactions that lead to intermediates23 and non-native strand registry24, results consistent with experi-

mental studies. 

Calculations for the majority of the twelve fast-folding proteins converge within the first 2-3 rounds of 

TerItFix. The folding pathway is depicted for each residue by plotting the fraction of structures from the 

end of each round for which the residue lies within 2 Å of the native structure when the structures are 

aligned to the native structure by the TM-score, a global metric used to assess the quality of structures 

25.  

The TerItFix (Figure 2) and all-atom MD pathways (Figure 3 in Ref. 1) exhibit a similar order of struc-

ture formation. The same regions of the sequence tend to develop structure early in both classes of simu-

lations, further validating the ability of TerItFix to identify gross aspects of the folding pathways. Our 

definition of structure formation is based on a global alignment to the native structure, whereas the defi-

nition used by Lindorff-Larsen, et al. employs a local (five residue) metric of similarity to the native 

structure. Consequently, their depiction of the pathway is primarily sensitive to secondary rather than 

tertiary structure formation. The two methods also yield similar pathways when analyzed with the same 

local metric (Fig. S1). 

The order in which residues become native-like in the all-atom MD simulations correlates with their 

propensity to form local native-like secondary structure in the DSE 1. The DSE of the MD simulations 

contains a high, and potentially excessive amount of secondary structure in an overly collapsed DSE7, 26, 
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27, particularly for λ repressor where denaturation is accompanied by the unfolding of the helices ac-

cording to multiple methods17, 28-31. In contrast, TerItFix simulations begin from an unstructured DSE 

that reproduces the experimentally observed NMR residual dipolar coupling patterns and dimensions of 

expanded chains in the DSEs 18. Figure S2 provides a sample of five random initial structures from the 

TerItFix’s DSE for each of the twelve proteins. This difference likely accounts for the early portions of 

the pathways produced by TerItFix having less helical structure, especially for λ repressor, Protein B 

and villin.  

In spite of this disparity, the similarities between the methods are notable. The collapsed environment in 

the all-atom DSE present in the MD simulations likely promotes secondary structure in the manner 

similar to what TertItFix produces as a consequence of templating onto existing structure as the temper-

ature is lowered in the MCSA. The folding behavior is guided by similar environmental clues in both 

methods, a feature that may account for the general agreement between the two methods.  

Our finding that TerItFix produces similar folding pathways despite starting with a much less structured 

DSE cautions against overemphasizing the importance of the unfolded state propensities in determining 

folding pathways. TerItFix’s success provides support to a more expansive view where intrinsic local 

structural propensities (which often favor non-native polyproline II conformations18, 32) may be overrid-

den by environmental context as stable motifs sequentially interact and stabilize the formation of addi-

tional structure in an incremental fashion. For example, an otherwise unstable amphipathic helix or 

hairpin is stabilized in the presence of hydrophobic surfaces, whether they arise semi-randomly or 

through specific interactions. We believe this view more accurately reflects folding behavior 33 than one 

that emphasizes the formation of local native-like structure in the DSE.  

The TerItFix algorithm contains all six of the necessary physical interactions necessary for a successful 

algorithm, as recently proposed by Dill, 34 namely, hydrogen bonds, van der Waals interactions, back-
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bone angle preferences, electrostatic interactions, hydrophobic interactions and chain entropy. In addi-

tion, we include a backbone desolvation term to reflect the observation that buried hydrogen bond do-

nors and acceptors essentially always form hydrogen bonds in native structures 35. Accordingly, the term 

we introduce to recognize this 7th feature penalizes buried amide nitrogens and carbonyl oxygens with 

unsatisfied hydrogen bonds. This burial term also serves to inhibit an unphysical, early, non-specific 

hydrophobic collapse 26, 27, 36. 

However, these seven energetic terms alone are woefully insufficient to locate the “needle in a hays-

tack” native structure within the vastness of conformational space. Early folding steps in the cooperative 

folding of proteins are uphill in free energy, and even productive conformations unfold faster than they 

form on the reactant side of the kinetic barrier. Hence, an explicit search strategy is essential to guide 

the uphill exploration through conformational space. Accordingly, we reinforce the process of sequen-

tial stabilization by biasing (rather than enforcing) the backbone sampling, hydrogen bonding and ter-

tiary contacts in an iterative manner intended to mimic how real proteins traverse the energy surface on 

the route(s) to the native state. The success of this approach provides strong support for the contention 

that sequential stabilization provides an expedient mechanism for folding proteins both in vitro and in 

silico. The natural process of stepwise assembly in protein folding might also explain successes of pre-

vious protein modeling methods based on a combination of building blocks37 and evolutionary algo-

rithms to increase native content38. 

We produce encouraging results for both native structures and folding pathways for a variety of proteins 

without utilizing homology-based information. The overall simplicity of the Cβ-level model (lacking 

side chain rotameric states) decreases computational requirements by orders of magnitude and provides 

a direct route to apply and validate our understanding of the fundamental principles relevant to protein 

folding, principles also expected to be crucial for predicting protein recognition and conformational 

changes. 
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