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We present a theory that elucidates the major momentum and spin relaxation processes for
electrons, holes and hot excitons in monolayer transition-metal dichalcogenides. We expand on
spin flips induced by flexural phonons and show that the spin relaxation is ultrafast for electrons
in free-standing membranes while being mitigated in supported membranes. This behavior due to
interaction with flexural phonons is universal in 2D membranes that respect mirror symmetry and
it leads to a counterintuitive inverse relation between mobility and spin relaxation.

PACS numbers:

Single-layer transition-metal dichalcogenides (SL-
TMDs) put together exotic charge, spin and valley elec-
tronic phenomena in a simple 2D solid-state system [1–3].
Recent advances in characterization of these materials
have sparked a wide interest in their d-band semicon-
ducting behavior and spin-valley coupling [4–7]. Room-
temperature mobility of the order of 100 cm2/V·s in n-
type MoS2 monolayer transistor was demonstrated and
analyzed [8–10]. In addition, the unique time-reversal re-
lations between spin and valley degrees of freedom were
studied from the exciton photoluminescence (PL) [11–
14]. In spite of these recent advances and supporting
studies of band-structure and phonons parameters [15–
20], there is still no unifying description of the spin and
charge transport in these materials.

In this Letter, we present a theory that elucidates the
intrinsic momentum and spin relaxation mechanisms in
SL-TMDs. We first delineate the transport limitations
at elevated temperatures via zeroth-order selection rules
and make connection with the energy relaxation of hot
excitons. It is shown that spin-conserving scattering be-
tween direct and indirect exciton bands leads to reduc-
tion in the circular polarization degree of the PL. Then,
we analyze the intriguing physics of spin relaxation due
to scattering with long-wavelength flexural phonons and
compare the findings with the case of graphene. Ultrafast
spin relaxation of electrons is predicted for free-standing
SL-TMDs whereas for supported membranes the spin
lifetime is greatly enhanced. Finally, we discuss the rela-
tion between spin relaxation and charge mobility.

Figure 1(a) shows the trigonal prismatic lattice struc-
ture of monolayer MX2 where M (X) denotes the
transition-metal (chalcogen) atom. The lack of space-
inversion center lowers the symmetry compared with
monolayer graphene, leading to spin-split energy bands
as shown in Fig. 1(b). Rather than invoking elaborate
numerical techniques, we explain the essential transport
properties of SL-TMDs by rendering the transformation
properties of pertinent electronic states and atomic dis-
placements. This information is captured by the irre-
ducible representations (IRs), shown in Fig. 1(b) for edge
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FIG. 1: (Color online) (a) Top and side views of the real space
lattice. (b) Typical scheme of primary and satellite valleys in
the conduction and valence bands.

states of the conduction and valence bands [21]. We be-
gin with the electron-phonon interaction in its zeroth or-
der, characterized by nonvanishing scattering amplitude
between band-edge states [22]. In experiments, these
processes are identified by their temperature dependence
(Bose-Einstein distribution of the involved phonon). Ta-
ble I lists the selection rules, and Fig. 2 shows the un-
derlying atomic displacements for cases of zone-center
phonons. With the exception of Γ4 that corresponds to
zeroth-order spin flips in the T valleys, energies of all
other phonon modes are non-negligible [21]. Thus, only
at elevated temperatures the transport in the K valleys
is affected by zeroth-order processes.

We summarize the physics encompassed in Table I.
The intravalley relaxation of either electrons or holes is
induced by homopolar scattering due to an out-of-phase
displacement of the two chalcogen atomic layers. As im-
plied from Fig. 2(a) and (b) for the respective cases of
momentum and spin relaxation, the relaxation is gov-
erned by short-range scattering (i.e., the effective charge
dipole from these long-wavelength displacements is zero).
The intravalley momentum relaxation is caused by thick-



2

TABLE I: Zeroth-order selection rules in MX2 compounds.
For spin-conserving scattering, double-group IRs are replaced
with simpler single-group IRs. Time reversal symmetry con-
nects K and −K points (e.g., K9=K∗

10 and K2=K∗
3 ).

Valleys spin-conserving spin-flip

Intra
(X ×X∗)∗ = Γ1 (K11 ×K∗

9 )
∗ = Γ5

X={K1−3, T1,Γ1} (T3 × T ∗
4 )

∗ = Γ4

Inter

(K3 ×K∗
2 )

∗ = K3

(K1 ×K∗
1 )

∗ = K1

(T1 ×K∗
3 )

∗ = T1 (T3 ×K∗
9 )

∗ = T2

(Γ1 ×K∗
1 )

∗ = K1 (Γ7↓ ×K∗
7 )

∗ = K6

   (a) (b) (c)

FIG. 2: (Color online) Atomic displacements of the Γ phonon
modes involved in zeroth-order scattering.

ness fluctuations of the layer due to the out-of-plane mo-
tion of the chalcogen atoms [Fig. 2(a)]. This physical
picture was first identified by Fivaz and Mooser [15], and
supported by ab initio calculations of Kaasbjerg et al ’s
who also showed a comparable contribution to the charge
mobility from Fröhlich interaction [10]. Zeroth-order spin
flips in the K valleys are enabled uniquely by homopolar
in-plane optical phonons which do not exist in graphene
structures [Fig. 2(b)].

The intervalley scattering between primary and satel-
lite valleys (K×T & K×Γ) is relevant due to the flat
nature of the d bands in SL-TMDs. This scattering is
likely to facilitate the Gunn effect when applying a large
in-plane electric field [23]. Namely, accelerated carriers
are scattered to the satellite valleys in which the mobility
and spin relaxation rates are different [24, 25]. MX2 com-
pounds with heavy (light) chalcogen atoms have a rela-
tively small ∆TK (∆ΓK) energy spacing [18], and there-
fore can be used as n-type (p-type) Gunn diodes. Fi-
nally, we discuss the nonvanishing intervalley scattering
between edges of the K and −K valleys. The selection
rules show that such scattering largely affects the charge
but not the spin transport. The lowest-order spin-flip
of either electrons or holes is forbidden by time reversal
symmetry. The conduction-band rule (K3×K∗

2 ) is rel-
evant for electron transport in n-type monolayers [10].
The valence-band rule (K1×K∗

1 ), however, is likely to af-
fect less the transport of holes due to the relatively large
energy splitting (K8 ↔K8 or K7↔K7 intervalley tran-
sitions in Fig. 1).
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FIG. 3: (Color online) Direct and indirect exciton bands. The
optical and exciton-phonon scattering processes are sketched
under σ+ photon excitation. Real (virtual) scattering is de-
noted by solid (dashed) lines and phonon IRs are marked.
Right blue (left red) paths lead to σ+(σ−) luminescence.

As an important application, we show that spin-
conserving scattering between K and −K valleys is im-
perative for understanding recent exciton PL measure-
ments [11–14]. Figure 3 shows the exciton bands of
singlet composites (‘bright excitons’), where upper and
lower branches are due to the valence-band spin splitting
[26]. The zone-center bands comprise electron and hole
states of the same K valley (direct excitons), where each
of the doubly-degenerate zone-center states transform as
Γ6 and include ml=±1 excitons depending on light he-
licity. Zone-edge bands, on the other hand, belong to
K2,3 and comprise electrons and holes from opposite K
valleys (indirect excitons). In the supplemental mate-
rial we quantify the circular polarization degree of the
PL by modeling the absorption and relaxation processes
that precede recombination. Here, we summarize this
physics and show the relation with selection rules. First,
when the exciting photon energy is between EA and EB

(Fig. 3), both upper and lower bands are excited due to
energy broadening by impurities and substrate imperfec-
tions [11, 12, 14]. Second, the phonon-assisted indirect
absorption, a second-order process shown by dashed ar-
rows in Fig. 3, cannot be neglected since it has many
more available final states compared with the direct ab-
sorption that is limited to K=ke+kh =0 [27]. Third,
the intervalley scattering during the relaxation from the
upper to lower Γ6 band flips ml without a spin-flip of the
electron or hole [28]. The missing angular momentum is
carried by K1 and K3 phonons, as implied from Table I
and visualized in Fig. 3 for σ+ excitation. This rapid re-
laxation explains the measured reduction in the circular
polarization degree [14], and it is enabled in multivalley
direct-gap SL-TMDs due to the (so-far ignored) unique
coexistence of direct and indirect exciton bands.

In the remainder of the Letter, we study the trans-
port due to interaction with long-wavelength acoustic
phonons. As in other materials, the vanishing ener-
gies of these phonons render this nonzero-order interac-
tion important. We first mention the fundamental dis-
tinction between charge and spin transport in monolay-
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ers that respect mirror symmetry (e.g., graphene and
SL-TMDs). For interactions with single phonons, spin-
conserving scattering is not affected by long-wavelength
flexures in the out-of-plane direction [29], whereas spin-
flip scattering induced by flexural phonon does not vanish
[the ZA mode in Fig. 2(c)]. Mathematically, it is un-
derstood from the scattering integral, 〈sf |∇V|si〉, where
in-plane ∂V/∂r‖ (out-of-plane ∂V/∂z) deformations are
even (odd) with respect to mirror symmetry which also
brings in ±1 for si=±sf .
We focus on the Elliott-Yafet spin-flip mechanism due

to the intrinsic electron-phonon scattering [30, 31]. Using
the method of invariants [32], the spin-flip transition am-
plitudes from scattering with flexural phonons are com-
pactly expressed as

T sf
ZA,q

≈
√

kBT

2̺Aγ2q2η
g(ki,kf ) , (1)

where ̺ is the areal mass density and A is the area. γ
and η are mechanically-dependent parameters that set
the flexural-phonon dispersion. Their values will be in-
troduced when estimating the spin lifetimes in differ-
ent monolayer conditions. q = ki − kf denotes the
small phonon wavevector where ki and kf are wavevec-
tors of the initial and final electronic state, respec-
tively. g(ki,kf ) depends on the valley position and reads
Ξso
Γ1
|ki + kf |q in the zone-center, Ξso

K q in the zone-edge,
or Ξso

T1
in-between. Ξso

X are spin-orbit coupling scatter-
ing constants [21]. The linear wavevector dependence of
g(ki,kf ) in the zone edge enables estimation of Ξso

K from
the energy change of the K-point spin splitting in re-
sponse to static strain. By symmetry, shear-strain com-
ponents of the form ǫ± = ǫxz± iǫyz are associated with
frozen flexural phonons. By focusing on the spin depen-
dent part of the static strain Hamiltonian at k = K,

H0 +Hso(ǫ+) =

(

b|ǫ+|2 aǫ+
aǫ− ∆K − b|ǫ+|2

)

, (2)

we find that a=Ξso
K [21]. a and b are spin-dependent

shear deformation potentials, and ∆K is the spin split-
ting without strain. The value of Ξso

K , needed for
estimation of the spin relaxation, can now be read-
ily extracted from the strain-induced spin splitting
√

(∆K + 2b|ǫ+|2)2 + |2aǫ+|2. Using ABINIT (an open-
source DFT code) with Hartwigsen-Goedecker-Hutter
pseudopotentials, we find that Ξso

K for monolayer MoS2,
MoSe2, WS2 and WSe2 are respectively 0.2, 0.27, 0.66
and 0.67 eV in the conduction band [21, 33], and similar
magnitudes in the valence band. A notable feature in the
conduction band of SL-TMDs is that ∆K can be much
smaller than Ξso

K : whereas ∆K is mostly governed by the
small deviation of the state from centrosymmetric dz2 -
like orbitals (for which the spin-splitting vanishes), Ξso

K

stems from interband spin-orbit coupling between differ-
ent d orbitals [21].

Having values of the spin-dependent scattering con-
stants, we quantify the K-valley spin relaxation rate due
to interaction with flexural phonons. For electrons, its
contribution dominates all other processes in Table I.
Using Fermi golden rule with (1) and assuming elastic
scattering, the spin-flip rate of the k-state is

τ−1
s (k) ≈ 2mt(ℓ)(Ξ

so
K
)2kBT

~3̺γ2(k′+k)2η−2
· 2F1

(

1
2 , η−1; 1; 4kk′

(k+k′)2

)

. (3)

ℓ(t) denotes scattering from the top to lower spin-split
bands (or vice-versa). mt(ℓ) is the effective mass and

k′ =
√

mt(ℓ)k2/mℓ(t) + (−)2mt(ℓ)∆K/~2. The hypergeo-
metric function can be recast to simpler forms for case-
specific η values. The respective expression for T valley
spin flips is similar in form to (3), but with η→ η+1
which reflects faster spin relaxation (as implied from Ta-
ble I). We continue the analysis and calculate the K-
valley spin relaxation rate in two limiting cases.
free-standing monolayers. Without a stiffening mech-

anism to suppress violent undulations, 2D membranes
would crumple [34]. In crystal monolayers, such mech-
anism is naturally provided by the coupling between
bending and stretching degrees of freedom. The cou-
pling, in the lowest order that satisfies flat phase con-
ditions, renormalizes the dispersion power law of long-
wavelength flexural phonons from η=2 to η=3/2, and
it yields γ= 4

√

kBT/̺v20 where v0 ≈ vTA

√

1− v2
TA

/v2
LA

is expressed in terms of the mode-dependent sound ve-
locities [29, 34]. Using these parameters and assum-
ing mK ≡mt=mℓ, the effective spin relaxation rate for
Boltzmann distribution in the spin-split bands becomes

1

τs
=

√

8πmK

̺v2o

(

Ξso
K

~

)2 [
Erfc(

√
βK)

1 + e−βK

(

1 +
0.1√
βK

)]

, (4)

where βK =∆K/kBT . Due to a relatively large valence-
band splitting, the βK > 1 limit applies for holes at all
practical cases where the temperature dependence is
largely set by the complementary error function. Fur-
thermore, in compounds with heavier transition-metal
atoms (larger splitting), the flexural induced spin relax-
ation of holes is slower in spite of a larger Ξso

K
. For exam-

ple, in MoS2 where ∆
(h)
K =160 meV and in WS2 where

∆
(h)
K =450 meV [18], the flexural induced spin lifetimes

at 300 K are, respectively, ∼ 0.04 ns and ∼ 0.5 µs [35]. In
addition to scattering with flexural phonons, the intrinsic
spin relaxation of holes is affected by intravalley scatter-
ing with in-plane homopolar phonons [Fig. 2(b)], or by
intervalley scattering between K and −K. Whereas the
latter spin-flip scattering is forbidden in the zeroth-order
by time reversal symmetry (Table I), it is not impeded
by the relatively large spin splitting. Signatures of the
homopolar and intervalley spin-flip mechanisms can be
observed from their temperature dependence.
The spin relaxation of electrons is much faster due to

the small spin splitting in the conduction band. In MoS2



4

where ∆
(e)
K ≈ 4 meV [20], the room-temperature spin

lifetime is τs ∼ 0.05 ps [35], and it increases noticeably
only below 50 K. Interestingly, the spin relaxation of
electrons is enhanced in compounds with lighter metal
atoms [their weaker spin-orbit coupling leads to smaller

∆
(e)
K ]. Furthermore, the spin relaxation rate diverges in

the pathological limit ∆
(e)
K → 0 [37].

supported monolayers. Another means to stiffen the
membrane is naturally provided by van der Waals (vdW)
interactions when the monolayer is placed on a substrate
[38]. The support brings in a minimum cutoff energy
for out-of-plane displacements. The cutoff energy, Ωc

= ~
√

κs/Mu, is calculated from the average vdW inter-
atomic force constant between the monolayer and the
substrate (κs), and the average atomic mass of the mono-
layer (Mu). In the long-wavelength limit, we can therefore
approximate the dispersion of flexural phonons by η=0
and γ=Ωc/~. The effective spin relaxation rate becomes

1

τs
=

(2mKΞ
so
K
)
2

~3̺
· 4 + 2βK

(1 + eβK )β2
c

, (5)

where βc =Ωc/kBT < 1 is assumed. The temperature de-
pendence is quadratic for βc <βK < 1 and exponential
for βc< 1<βK. The substrate coupling brings in slower
relaxation that at room temperature reaches τs ∼ 3 ps
(∼ 0.2 ns) for electrons (holes) in supported MoS2 with
Ωc ≈1 meV [39]. The spin-lifetime enhancement from
η=3/2 to η=0 is sharper for electrons due to their
smaller spin-splitting (phonons with longer wavelength
are capable of inducing transitions between opposite spin
bands). Figure 4 summarizes the temperature depen-
dence of τs for various SL-TMDs [35, 39].
We compare the spin relaxation induced by flexural

phonons in graphene and MX2. The space inversion
symmetry in graphene mandates spin-degenerate energy
bands, resulting in anisotropic relaxation that depends
on the spin orientation. Defining the latter by out-of-
plane polar angle (θs) and in-plane azimuthal angle (φs),
the spin-flip transition amplitude due to elastic scattering
with flexural phonons follows (1) where

g(ki,kf )= ikΞso
K
sin2φ−

[

sin2
θs
2
e2iφs−iφ++ cos2

θs
2
eiφ+

]

. (6)

The other angles, φ± = 1
2 (tan

−1 kx,f

ky,f
± tan−1 kx,i

ky,i
), are

due to the Dirac-cone energy dispersion. Formal ana-
lytical derivation of this result will be presented in a fu-
ture long publication. Here we mention that the pref-
actor k sin2 φ−= q2/4k, previously found by numerical
techniques [40], originates from space-inversion symme-
try and spin-dependent energy dispersion in the cone re-
gion. Away from the Dirac point (k=0), the spin re-
laxation timescales are longer in graphene than in SL-
TMDs on accounts of the higher power-law in phonon
wavevector (q2 vs q) and the relative smallness of Ξso

K
in

carbon-based systems (∼ 10 meV [41]).
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FIG. 4: (Color online) Electron spin lifetimes versus temper-
ature, governed by intravalley scattering with flexural phonon
for free-standing [Eq. (4)] and supported SL-TMDs [Eq. (5)].

All these findings lead to a counterintuitive relation
between charge mobility and spin relaxation in 2D mem-
branes. Whereas increased stiffness has been shown to be
associated with slower spin relaxation, its coupling with
charge mobility seems to have the opposite trend. For ex-
ample, high mobility in supported membranes is a token
of diminished effect from adsorbents and substrate im-
perfections. A smaller coupling of the membrane to such
parasitics would enable freer and softer out-of-plane un-
dulations leading to ultrafast spin relaxation of electrons
without affecting their mobility (forward spin-flip scat-
tering by long-wavelength flexural phonons). Therefore,
an inverse trend between spin and momentum relaxation,
a hallmark of Dyakonov-Perel spin dephasing processes,
can be realized in a Elliott-Yafet spin flip system. This
physics is universal in relatively clean 2Dmembranes that
respect mirror symmetry. In such membranes, charge
transport is decoupled from harmonic out-of-plane un-
dulations while spin relaxation is not severely affected
by the presence of impurities.

In conclusion, we have presented a concise theory of
intrinsic transport properties in single-layer transition-
metal dichalcogenides. Lowest-order scattering processes
were identified from group theory in both charge and spin
transport regimes, and were found relevant to the trans-
port of free-carriers at elevated temperatures and for the
energy relaxation of hot excitons. In addition, the spin
relaxation induced by scattering with long-wavelength
flexural phonons was quantified. For electrons, the ul-
trafast rate is attributed to the typical softness of 2D
membranes and to the small spin splitting in the conduc-
tion band. The relatively large splitting in the valence
band, on the other hand, renders p-type monolayers bet-
ter candidates for preserving spin information.
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