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We consider how fractional excitations bound to a dislocation evolve as the dislocation is separated
into a pair of disclinations. We show that some dislocation-bound excitations (such as Majorana
modes and half-quantum vortices) are possible only if the elementary dislocation consists of two
inequivalent disclinations, as is the case for stripes or square lattices but not for triangular lattices.
The existence of multiple inequivalent disclination classes governs the two-dimensional melting of
quantum liquid crystals (i.e., nematics and hexatics), determining whether superfluidity and orien-
tational order can simultaneously vanish at a continuous transition.

PACS numbers:

Spatial order (i.e., crystallinity) can be found inter-
twined with exotic quantum-mechanical order in vari-
ous systems: for instance, with unconventional super-
fluidity, in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state and related states [1–7]; and with topological elec-
tronic structure, in weak and crystalline topological in-
sulators/superconductors [8–14]. In such cases, the de-
fects of the translational crystalline order—i.e., dislo-
cations—can bind excitations or defects of the inter-
twined quantum-mechanical order, such as Majorana
bound states, helical edge modes, or half-quantum vor-
tices [15, 16]. More generally, such composite defects and
their proliferation are a hallmark of deconfined quantum
criticality [17]. A common feature of the dislocation-
bound states noted above is that they are “Z2” in char-
acter, i.e., two of them combine to give a conventional
bound state which is trivial in some sense.

The fact that dislocations can bind such Z2 states
raises a conceptual puzzle because dislocations are them-
selves composite defects: a dislocation is a bound state
of two disclinations, which are topological defects of ori-
entational order [18–22]. When a dislocation is split
into two widely separated disclinations (Fig. 1), there
is prima facie no straightforward way for the accompa-
nying bound state to divide or stretch between the two
disclinations; nor is there an obvious principle for assign-
ing the bound state to either disclination. In this work
we immediately present the resolution to this puzzle by
explaining why the bound state attaches itself to one of
the two disclinations, and then discuss the non-trivial
consequences of this concept.

Following Ref. [23], we note that certain lattices (in-
cluding stripes and square lattices) have topologically in-
equivalent classes of disclinations, some of which support
exotic bound states on their own. We find that a dis-
location carrying a Z2 bound state is always composed
of one trivial and one nontrivial disclination; when the
dislocation splits, the bound state attaches itself to the
non-trivial disclination. An immediate corollary is that
in lattices without multiple, inequivalent types of discli-
nations, there will be no non-trivial Z2 bound states on

dislocations either. Using these ideas we show that when
translational order is intertwined with superfluidity, the
presence, or absence, of multiple disclination classes mod-
ifies the structure of the phase diagram in two dimen-
sions. For example, in lattices that have only one class of
elementary disclination (e.g., hexagonal lattices [24]), su-
perfluid and liquid-crystalline order can generically van-
ish at once through a continuous transition; in lattices
with inequivalent disclinations, however, this is forbid-
den except possibly at a multicritical point. While this
work only explicitly considers superfluid order, the ar-
guments and main result will also apply to cases where
dislocations carry other, perhaps magnetic, defects (as in
Refs. [25, 26]).

Our predictions are straightforward to test in ultra-
cold atomic experiments with FFLO liquid crystals or
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FIG. 1: (a), (b) ±π/2-disclination dipoles that fuse into dislo-
cations with odd, even Burgers’ vectors respectively. (c) Two
inequivalent classes of disclinations of a two-dimensional
striped superfluid. Lines denote nodes of the order param-
eter; the sign of the condensate between these is indicated on
the left. The crest-centered disclination (red circle) involves
no sign-frustration, whereas the trough-centered disclination
(red square) does involve sign-frustration.
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spin-orbit coupled condensates [27–33]. Furthermore, our
central result regarding inequivalent disclinations has im-
mediate experimental consequences for weak topological
insulators and superconductors where our arguments im-
ply that it is the disclination core-size, rather than the
dislocation core-size, that sets the scale and spacing of
bound states. This prediction is particularly salient to
experiments, as the conditions under which dislocations
are common and easy to probe (i.e., when crystalline or-
der is weak) are precisely those under which the disloca-
tions consist of two weakly bound disclinations.

Classification of disclinations. We begin by discussing
the main result of Ref. [23] on the holonomy-based clas-
sification of disclinations. The formal argument is sum-
marized in the Supplemental Material; here, we state the
result and provide an intuitive justification. The result
can be stated as follows: a disclination is characterized
by (a) an angle θ (the Frank angle), through which the
lattice rotates; and (b) a center around which the rota-
tion takes place. Allowed values for both θ and the center
can be determined by looking at global transformations
that leave the lattice invariant (i.e., that map the lattice
onto itself). Thus, the allowed values of θ are mπ/(2n),
where the lattice is n-fold symmetric; we shall only be
concerned with the elementary, π/n disclinations—e.g.,
the π disclination for a stripe [Fig. 1(c)], the π/2 disclina-
tion for a square lattice [Fig. 1(a)], etc. Now, an allowed θ
does not, on its own, automatically guarantee invariance.
One can see this by trying (for instance) to rotate a stripe
by 180 degrees about an arbitrary point: in general, this
transformation would lead to a translated stripe, and is
thus not a symmetry. There are only two centers around
which a global π rotation brings a stripe back to itself:
these are a crest (a point of maximum density) and a
trough (a point halfway between two crests). Similarly,
there are only two centers around which a π/2 rotation
brings a square lattice back to itself: these are a vertex
or a plaquette. For a triangular lattice, one can see that
the only allowed center for a π/3 rotation is a vertex.

The result of Ref. [23] is that disclinations with dif-
ferent centers are inequivalent, and cannot continuously
be transformed into one another. This is easy to see in
many concrete examples: for instance, on the square lat-
tice [Fig. 1(a)], the vertex-centered disclination involves
one site with an odd coordination number, whereas the
plaquette-centered disclination does not. In general, ele-
mentary disclinations come in two inequivalent varieties
for a stripe (crest- or trough-centered) or a square lattice
(vertex- or plaquette-centered), but only one variety for
a triangular lattice (vertex-centered). Our central result
in what follows is that this classification of disclinations
based on inequivalent centers can have a major impact
on melting transitions.

Striped superfluids. We now address the nature of
disclination-vortex bound states, beginning with the case
of a striped superfluid described by a Bose condensate of

the form ψ(x) = ψ cos(k · x + φ) exp(iθ), where ψ is a
(fixed) amplitude and θ and φ are phases associated with
the superfluid and translational Goldstone modes respec-
tively. Examples of such states are the Fulde-Ferrell-
Larkin-Ovchinnikov state proposed for spin-polarized su-
perconductors [1–4, 34, 35], and states of ultracold atoms
with spin-orbit coupling [29–31, 33, 36]. For specificity,
we address the rotationally invariant case; thus, our anal-
ysis directly applies to FFLO states and to Bose gases
subject to a Rashba spin-orbit coupling [28–30, 33]. How-
ever, we could restore weak anisotropy without affecting
our conclusions, as discussed below.

The striped superfluid has three easily identifiable
topological defects [5]: (i) a pure dislocation, in which φ
winds by 2π, (ii) a pure vortex, in which θ winds by
2π, and (iii) a half-vortex-dislocation bound state, in
which both φ and θ wind by π. Since defects (i) and
(ii) can be written as dipoles of (iii), it suffices to under-
stand how the vortex-dislocation bound state separates
into disclinations. For the striped superfluid there are
two types of disclinations, a node-centered one and an
antinode-centered one; these two types are affected in
very different ways by the sign-changing order param-
eter. In particular, the sign of the order parameter is
frustrated around a node-centered disclination, whereas
it is not frustrated around an antinode-centered discli-
nation [Fig. 1(c)]. This sign-frustration around a node-
centered disclination can precisely be compensated by
introducing a half-vortex. Thus, the Z2 classification of
disclinations for stripes provides a direct (and hitherto
undiscussed) geometric criterion for understanding how
a half-vortex half-dislocation splits. Of the two kinds
of possible disclinations, only the node-centered (type-
A) disclination binds a vortex, to compensate for the
sign-frustration. Therefore, as an elementary vortex-
dislocation bound state contains one node-centered and
one anti-node centered (type B) disclination, the type-A
disclination inherits the half-vortex when the dislocation
unbinds.

We turn to the melting of a striped superfluid. In a
rotation-invariant two-dimensional system, dislocations
proliferate at any nonzero temperature, reducing the
smectic to a nematic [3]. In what follows, we consider this
nematic; we denote the elementary disclinations and their
composites using the notation (α, β) where α is the orien-
tational charge and β is the superfluid charge. A type-A
disclination (1, 1) has both superfluid and orientational
charge, whereas a type-B disclination (1, 0) has only ori-
entational charge. Thus, a pure dislocation is (0, 0) (and
can be constructed as a dipole of two type-A or type-B
disclinations with opposite α); a pure vortex has charge
(0, 2) and can be composed of two type-A disclinations of
opposite α (Frank angle); and finally, a half-vortex half-
dislocation bound state consists of one type-A and one
type-B disclination, and thus carries charges (0, 1).

The low-energy theory of a nematic superfluid is given,
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in the one-constant approximation [18], by

Hel. = κ
[
(∇·n)2 + (∇×n)2

]
+ ρs|∇θ|2, (1)

where n is a unit vector normal to the local orientation
of the nematic, κ is the Frank constant governing orien-
tational stiffness, and ρs is the superfluid stiffness. This
equation can be analyzed using the standard Coulomb
gas technique [5, 37] for Kosterlitz-Thouless transitions.
(This analysis involves transforming Eq. 1 into a theory
in terms of topological defects [5, 37], and then comput-
ing the scaling dimensions of various defects.) The result
of this analysis is the following criterion for the temper-
ature at which a topological defect with charges (α, β)
proliferates (or unbinds) [5]:

kBTαβ =
π

2
[α2κ+ β2ρs] (2)

We now investigate what this criterion implies for the
phase diagram of the nematic superfluid.

In the nematic superfluid, all charge is confined, so
that the equilibrium state contains neutral dipoles of two
type-A or two type-B disclinations. Type-A disclinations
are bound by superfluid and orientational charge; thus,
they are more tightly bound than type-B disclinations,
and cannot proliferate before the type-B disclinations.
Thus, we find that there is generically no direct transition
from the nematic superfluid to an isotropic normal phase,
contrary to Ref. [38]. In the Coulomb gas language, one
can see this as follows. Depending on ρs/κ, the defects
with the lowest threshold for unbinding are type-B discli-
nations [(1, 0)] or orientationally neutral half-vortex half-
dislocations [(0, 1)]; other defects are always less relevant.
For small ρs/κ, the half-vortex half-dislocation prolifer-
ates first, leading to a nematic non-superfluid state. For
larger superfluid densities, the type-B disclination prolif-
erates first, leading to an isotropic superfluid. The result-
ing phase diagram is shown in Fig. 2(a): the two tran-
sitions meet at a multicritical point, at κ = ρs, which is
the only point at which a direct transition out of the ne-
matic superfluid into a normal phase is possible (although
nonlinearities might change the phase diagram near this
multicritical point). Note that in experiments with spin-
orbit coupled Bose gases, one can tune the ratio κ/ρs by
tuning the spin-dependent scattering lengths [29–33].

We now turn to hexagonal and square-lattice pair-
density waves with sign-changing order parameters.
These can arise due to nonlinear interactions between
stripes, or can be engineered by tuning interactions
(e.g., cavity-mediated [39, 40] or fermion-mediated in-
teractions) peaked at certain momenta. A specific pair-
density-wave state on a hexagonal lattice was recently
discussed [7] with an analysis that ignored the effects of
disclinations. However, disclinations play a crucial role
in the melting transition and we find, remarkably, that
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FIG. 2: (a) Phase diagram of a striped, or square-lattice, su-
perfluid in two dimensions, for a fixed Frank constant, as a
function of superfluid stiffness and temperature. Solid lines
denote phase transitions, due to the proliferation of defects
(indexed by their orientational and superfluid charges); the
dashed line represents the temperature at which type-A discli-
nations would (hypothetically) have proliferated if the sys-
tem were still ordered. The four phases are nematic/hexatic
(Ne/He), nematic/hexatic superfluid (Ne/He-SF), isotropic
superfluid (SF), and isotropic normal (I). (b) Phase diagram
of a triangular-lattice superfluid [case (a)]. The notation is
the same as that in (a); note that a direct transition from the
hexatic superfluid to the isotropic normal state, absent in (a),
appears here.

the nature of two-dimensional melting depends strongly
on the lattice geometry, via the classification of disclina-
tions.

Unlike striped states, crystalline states can sustain
quasi-long-range order at finite temperatures in two di-
mensions; however, they generally melt in two steps, with
dislocations proliferating first and then disclinations [19–
21, 41]. We shall analyze the intermediate “hexatic”
phase, in which pure dislocations have proliferated (so
that translational order is short-range) but disclinations
are confined. For square lattices (i.e., checkerboard ar-
rangements of the order parameter), as with stripes,
there are two inequivalent classes of disclinations; only
one of the classes has sign-frustration and thus binds
a half-vortex [Fig. 1]. Thus, the phase diagram for a
square-lattice is exactly as in the striped case: the first
defect to proliferate is either the neutral disclination or
the vortex-dislocation hybrid, so that the transition out
of the hexatic superfluid is into either a hexatic or a su-
perfluid state.

For triangular/hexagonal lattices we must distinguish
between two types of configurations: (a) that where the
nodes of the order parameter form a triangular lattice
[Fig. 3(a)]; and (b) that where the antinodes form a tri-
angular lattice [Fig. 3(b)] and the nodes occupy the dual
honeycomb lattice. This complication does not appear
in the square lattice because it is self-dual. We consider
case (a) first. We see the ±π/3 disclinations on the tri-
angular lattice in Fig. 4(e) break the •, ◦-sublattice or-
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FIG. 3: Two possible varieties of hexagonal-lattice superfluid.
(a) Hexagonal lattice of nodes of the order parameter, corre-
sponding to a honeycomb lattice of the particle density, +,−
represent the sign of Bose condensate ψ; (b) Hexagonal lattice
in the particle density, corresponding to a honeycomb lattice
of vortices, 0,±2π/3 are phases of the condensate ψ.

der that corresponds to the opposite signs in Fig. 3(a)
and therefore invariably carry a half-vortex [i.e. they
have charges (1, 1)]. These disclinations can be combined
to form pure vortices (0, 2) or double disclinations (2, 0)
[Fig 4(a-d)]. Depending on ρs/κ, any of the three defects
might proliferate first. In particular, the proliferation of
(1, 1) disclination-vortex states, which is favored when
the orientational and superfluid stiffness are comparable
[i.e., 1/4 ≤ κ/ρs ≤ 4], can give rise to a direct Kosterlitz-
Thouless transition between the nematic superfluid and
an isotropic normal state [Fig. 2(b)].

We now briefly comment on case (b), in which the
antinodes form a hexagonal lattice [7]; one can alterna-
tively regard this state as a honeycomb lattice in which
the •-sites are occupied by vortices and the ◦-sites by
antivortices in Fig 4. Formally, this situation is differ-
ent from that discussed so far, as the relative phase be-
tween neighboring antinodes is not π (i.e., a minus sign)
but 2π/3 (graphically, this can be represented as a tri-
coloring as in Fig. 4); correspondingly, the fractional vor-
tex [7] has a charge of 1/3, and is a Z3 rather than a Z2

defect. This distinction is crucial, for the following rea-
son: a nontrivial Z3 defect can bind to a dislocation even
if the dislocation consists of two equivalent disclinations,
because 2 = 1+1 and 1 = 2+2 mod 3, so that the original
puzzle discussed in the introduction does not apply. For
completeness, we show in the Supplemental Material that
this case yields a phase diagram of the form in Fig. 2(a);
its main significance in the present work, however, is that
it provides a simple counterexample, illustrating why the
restriction to Z2 bound states was crucial for our analy-
sis.

Finally, we sketch the implications of our results for
weak topological insulators and superconductors. It is
known that the presence of low-energy bound states on
a dislocation is determined by the weak topological in-
dex [15]; as the weak-index is always zero for a triangular
lattice, it follows that there are no bound states. On the
square lattice, one can explicitly see from the construc-
tion of Ref. [23] that a weak topological invariant en-
tails inequivalent disclinations. Although no analogous
classification of topological insulators (i.e., not assuming
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FIG. 4: (a-d) Inequivalent trivial ±2π/3-disclinations. None
breaks the •, ◦-sublattice order (no nearest vertices are of
same type). Tri-coloring ordering (no adjacent plaquettes
have same color) is preserved for (a) and (b) and is broken for
(c) and (d). (e) Topological ±π/3-disclination dipole. Each
breaks •, ◦-sublattice and tri-coloring order.

particle-hole symmetry) has been performed, one can ex-
plicitly see that in the case of a weak topological insu-
lator layered along the z axis, an edge dislocation line
along the z axis containing helical edge modes can be
decomposed into a disclination line that carries helical
modes and one that does not. These observations imply
that the transverse size of the bound states is set by that
of the disclination core, which is typically smaller than
the dislocation core. The presence of bound states also
generates an effective attraction between disclinations of
the same topological type; however, one expects this to
fall off exponentially with separation and therefore not
to affect melting transitions.

In summary, we have shown that the absence (pres-
ence) of inequivalent disclination classes implies that su-
perfluid and liquid-crystalline order can (cannot) be lost
at once via a Kosterlitz-Thouless transition. This predic-
tion is straightforward to test experimentally in ultracold
atomic gases, as vortex-unbinding can be seen via inter-
ferometry [42] and orientational order via time-of-flight
imaging [43]. We have argued, further, that the existence
of inequivalent disclinations corresponds to a nontrivial
weak invariant for topological insulators. The extensions
of this classification to states such as nematic Chern in-
sulators [44, 45], and to quantum melting [46, 47] will be
considered in future work.
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