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For many biological and engineered systems, a central function or design goal is to abbreviate the
time required to synchronize a rhythmic process to an external forcing signal. We present a theory
for deriving the input that effectively minimizes the average transient time required to entrain a
phase model, which enables a practical technique for constructing fast entrainment waveforms for
general nonlinear oscillators. This result is verified in numerical simulations using the Hodgkin-
Huxley neuron model, and in experiments on an oscillatory electrochemical system.
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The entrainment process is fundamental to numerous
scientific and engineering applications in which oscillat-
ing systems are asymptotically synchronized to an ex-
ternal periodic signal [1, 2]. The ability to optimize en-
trainment has important implications for achieving rapid
cardiac re-synchronization [3] and quick adjustment from
jet lag [4], maximizing the growth rate of plants [5], and
implementing phase-locked loop circuits and injection-
locked micro-integrated oscillators [6]. When the weak
perturbation approximation is made, a re-scaling of the
phase response curve (PRC) was shown to be the mini-
mum energy signal for spiking or entraining oscillators at
a given period [7–9], and a weighted sum of appropriately
shifted PRCs maximizes the range of frequency detunings
for which entrainment occurs [10, 11]. An alternative es-
sential objective is to minimize the time to entrainment
at a given forcing signal energy, in order to establish a
fixed phase relationship between the system and forcing
signal as soon as possible after the forcing is applied [12].
This notion of fast entrainment can also be used to min-
imize the time required to re-establish entrainment after
interruptions caused by disturbances [13].

In this Letter, we use phase model reduction to de-
rive an asymptotically optimal waveform that maximizes
the average rate of entrainment for general weakly forced
nonlinear oscillators. The rate of entrainment is char-
acterized by the coefficient of exponential decay in the
phase difference between the system and forcing signal.
We present a theory by which the entrainment time scale
is minimized for a specified forcing energy, where the op-
timal waveform is a sum of the PRC and its derivative
with weights that depend on the difference between the
natural and forcing frequencies. These findings can be
applied to weakly nonlinear oscillators just past the Hopf
bifurcation, as well as strongly nonlinear relaxation oscil-
lators. We confirm our results with numerical simulations
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using the Hodgkin-Huxley (HH) neuron model, as well as
in experiments on an oscillatory chemical system arising
through the electrodissolution of nickel in sulfuric acid.

Phase coordinate transformation is a model reduction
technique that is useful for examining nonlinear oscillat-
ing systems [14, 15], and can also be used for system iden-
tification when the dynamics are complex or unknown [2].
Such models have been studied extensively, with a partic-
ular focus on neural [14, 16] and electrochemical [17–19]
systems. Consider a full state-space model described by a
smooth ordinary differential equation system ẋ = f(x, u),
x(0) = x0, where x(t) ∈ Rn is the state and u(t) ∈ R is
a control, with an attractive, non-constant limit cycle
γ(t) = γ(t + T ) that satisfies γ̇ = f(γ, 0) on the peri-
odic orbit Γ = {y ∈ Rn : y = γ(t) for 0 ≤ t < T} ⊂ Rn.
This system is reduced to a scalar phase equation

ψ̇ = ω + Z(ψ)u, (1)

where ω is the natural frequency of oscillation, the Z is
a smooth PRC, and ψ(t) is the asymptotic phase [20].
The model is valid for inputs u such that the state-space
system remains within a neighborhood U of Γ [21], and
the PRC can be computed numerically [14, 22, 23].

The primary objective in entrainment design is to lock
the system to an input with the desired frequency Ω using
a control u(t) = v(Ωt) where v is 2π-periodic. We make
the weak perturbation approximation, i.e., v = εv1 where
v1 has unit energy and ε << 1, so that given this control
the actual state of the system is guaranteed to remain
in U , and the phase model (1) remains valid. We define
a slow phase variable φ(t) = ψ(t) − Ωt that satisfies the

dynamic equation φ̇ = ψ̇ − Ω = ∆ω + Z(Ωt + φ)v(Ωt),
where ∆ω = ω − Ω denotes the detuning between the
natural and forcing frequencies. To study the asymptotic
behavior of the slow phase, we eliminate the explicit de-
pendence on time on the right hand side by using formal
averaging [17]. Given a periodic forcing with frequency
Ω, we denote the forcing phase θ = Ωt. We also define an
averaging operator 〈·〉 : P → R on the set of 2π-periodic

functions by 〈x〉 = 1
2π

∫ 2π

0
x(θ)dθ. The weak ergodic the-

orem for measure-preserving dynamical systems on the
torus [24] implies that for any periodic function v, the
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interaction function

Λv(φ) = 〈Z(θ + φ)v(θ)〉

=
1

2π

∫ 2π

0

Z(θ + φ)v(θ)dθ

= lim
T→∞

1

T

∫ T

0

Z(Ωt+ φ)v(Ωt)dt (2)

is a smooth function in P. Using the weak perturbation
approximation and the formal averaging theorem [25],
the time-averaged slow phase dynamics are, up to O(ε2),

ϕ̇ = ∆ω + Λv(ϕ). (3)

Equation (3) is used to study the asymptotic behavior
of (1) under periodic forcing. We say that the system
is entrained by a control u = v(Ωt) when (3) satisfies
ϕ̇ = 0, which eventually occurs if there exists a phase
ϕ∗ satisfying ∆ω + Λv(ϕ∗) = 0. For non-zero control
waveform v and non-zero PRC Z, the function Λv(ϕ) is
not identically zero, so when the system is entrained there
exists at least one ϕ∗ ∈ [0, 2π) that is an attractive fixed
point of (3). We have shown that the minimum energy
periodic waveform that entrains a single oscillator with
natural frequency ω to a target frequency Ω is a re-scaling
of the PRC, given by v(θ) = −∆ωZ(θ)/

〈
Z2
〉

[9, 11].

Our goal here is to entrain the system (1) to a target
frequency Ω as quickly as possible by using a periodic
control v of fixed power P =

〈
v2
〉
. Ideally, the interac-

tion function would be of a piecewise-constant form, so
that the averaged slow phase ϕ converges to a fixed point
ϕ∗ at a uniform rate from any initial value. However, the
discontinuity as ϕ → ϕ∗ would result in a singularity in
the control v, making it infeasible in practice. An alter-
native is to maximize |ϕ̇∗|, the rate of convergence of the
averaged slow phase in the neighborhood of its attrac-
tive fixed point ϕ∗. The calculus of variations can then
be used to obtain a smooth optimal candidate solution
that also performs well in practice. When the system (3)
is entrained by a control v, there exists an attractive fixed
point ϕ∗ satisfying Λv(ϕ∗) + ∆ω = 0 and Λ′v(ϕ∗) < 0,
where ′ is the differentiation operator. In order to max-
imize the rate of entrainment in a neighborhood of ϕ∗
using a control of power P , the value of |ϕ̇| should be
maximized for values of ϕ near ϕ∗, which occurs when
−Λ′v(ϕ∗) is large. This results in the following problem
formulation for fast entrainment:

max
v∈P

J [v] = −Λ′v(ϕ∗) (4)

s.t.
〈
v2
〉

= P (5)

Λv(ϕ∗) + ∆ω = 0. (6)

The constraints can be adjoined to the objective using
multipliers λ and µ to yield the formulation

J [v] = −Λ′v(ϕ∗) + λ(
〈
v2
〉
− P ) + µ(Λv(ϕ∗) + ∆ω)

= −〈Z ′(θ + ϕ∗)v(θ)〉+ λ(
〈
v2
〉
− P )

+ µ(〈Z(θ + ϕ∗)v(θ)〉+ ∆ω)

=
1

2π

∫ 2π

0

(
v(θ)[µZ(θ + ϕ∗)− Z ′(θ + ϕ∗) + λv(θ)]

− λP + µ∆ω
)
dθ. (7)

The associated Euler-Lagrange equation is

µZ(θ + ϕ∗)− Z ′(θ + ϕ∗) + 2λv(θ) = 0, (8)

and solving for v yields the candidate solution

v(θ) =
1

2λ
[Z ′(θ + ϕ∗)− µZ(θ + ϕ∗)]. (9)

The multipliers λ and µ can be found by substituting (9)
into the constraints (5) and (6). This yields the equations

1

4λ2

[〈
(Z ′)2

〉
− 2µ〈Z ′Z〉+ µ2

〈
Z2
〉]

= P, (10)

1

2λ

[
〈Z ′Z〉 − µ

〈
Z2
〉]

= −∆ω. (11)

Because Z is 2π-periodic, one can show, e.g., using
Fourier series, that 〈Z ′Z〉 = 0, so that (11) easily yields
µ = 2∆ωλ/

〈
Z2
〉
. Substituting this result into (10)

leads to a quadratic equation (10) for λ. Now, by sub-
stituting (9) into Λ′(ϕ∗) = 〈Z(θ + ϕ∗)v(θ)〉 we obtain
Λ′(ϕ∗) =

〈
(Z ′)2

〉
/(2λ), so we choose λ < 0 when solving

(10) for λ in order to maximize the objective in (4). Thus
the optimal waveform and multiplier simplify to

v(θ) =
Z ′(θ)

2λ
− ∆ωZ(θ)

〈Z2〉
, λ = −1

2

√√√√ 〈(Z ′)2〉
P − (∆ω)2

〈Z2〉

, (12)

where we disregard the phase shift ϕ∗, because the en-
trainment process is asymptotic. For zero frequency de-
tuning, the optimal waveform is a re-scaling of the deriva-
tive Z ′ of the PRC. As |∆ω| increases, v continuously
transforms towards Z, which is the minimum energy
waveform for frequency control [9]. This transition re-
flects the conceptual trade-off between the fast entrain-
ment objective (4) and frequency control constraint (6),
which can be satisfied only when P > (∆ω)2/

〈
Z2
〉
.

Consider a system with a sinusoidal PRC, given by
Z(θ) = a sin(θ). Using angle sum identities and the fact
that in this case

〈
(Z ′)2

〉
=
〈
Z2
〉
, one can show that v

is of form v(θ) = P sin(θ). Indeed, for the case of a
sinusoidal PRC, a sinusoidal input optimizes the min-
imum energy [9] and rapid phase-locking objectives si-
multaneously. However, the utility of our approach is
most evident for oscillating systems with complex dy-
namics, in particular those that exhibit relaxation, and
hence higher harmonics in the PRC. As an example, con-
sider the Hodgkin-Huxley (HH) system [26], which is a
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FIG. 1. (a) PRC of the HH model; (b) Optimal fast entrain-
ment waveform v for HH system at Ω = ω and P = 0.1 mW.
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FIG. 2. Simulations with the HH model: (a) Convergence of
phase difference ∆ϕn between inter-spike intervals; (b) Expo-
nential fit for k when Ω = 1.01ω and P = 0.5. The k-values
are 0.5415, 0.9510, and 1.4139 for sine, PRC, and optimal
waveforms, respectively. (c) Initial convergence rates k (in
color) for 5 cycles with Ω ∈ [0.98ω, 1.02ω] and θ(0) ∈ [0, 2π]
when using the optimal waveform. (d) Average initial k on
(Ω, θ(0)) ∈ [0.98ω, 1.02ω]× [0, 2π] for sine, PRC, and optimal
waveforms is 0.3933, 0.5365, and 0.7691, resp. Initial diver-
gence takes place in 7.69%, 12.73%, and 6.04% of initial con-
ditions for sine, PRC, and optimal waveforms, respectively.

fundamental model used in the study of neural dynam-
ics [11]. When the baseline current Ib injected into the
axon is sufficiently high, the voltage V spikes repeatedly.
Our goal is to modulate the additional injected current
I(t) to entrain the spiking frequency to a desired target
Ω in as short a time as possible. We first reduce the HH
system to a phase model as in (1) where u = I(t), where
ω ≈ 0.429 rad/sec, and the PRC Z is given in Figure 1a.
After selecting the control power P and the target fre-
quency Ω, we use (12) to compute the optimal waveform
v, which is shown in 1b. Numerically, we use the Fourier
series coefficients of Z to evaluate expressions derived
from the PRC, such as Z ′,

〈
Z2
〉
, and so on. In this com-

putational example, we focus on initial convergence rates
for fast entrainment, which can be quantified by the rate
k at which the phase difference between successive inter-
spike intervals converges exponentially to zero, according
to ∆ϕn = e−kn, as shown in Figure 2. The optimal wave-
form (12) achieves a significantly greater average rate k
for all values of Ω and initial states on Γ.

The experimental utility of the phase model technique
for fast entrainment is demonstrated by manipulating

(a) (b)

FIG. 3. Electrodissolution experiments: (a) PRC and current
waveform (inset) of the electrochemical oscillations. The PRC
is measured by stimulating the system using a sequence of
pulses (A=200mV magnitude and τ =0.05 s pulsewidth) and
measuring the corresponding phase shift (Φ) as a function of
the phase; Z = Φ/(Aτ) rad/mV/s measurements (dots) and
Fourier fit with 5 harmonics (curve). (b) Optimal waveform
using (12) with Ω = ω, P = 0.5, and the PRC in (a).

an oscillatory chemical process [27]. A standard three-
electrode setup was used with a 1 mm diameter nickel
working, a Hg/Hg2SO4/(sat)K2SO4 reference, and a Pt
coated Ti rod counter electrode immersed in 3 mol/L sul-
furic acid solution at 10 oC. The nickel working electrode
was polarized with a potentiostat (Gamry Instruments,
Reference 600) at a circuit potential V = V0 + AF (θ),
where A and F are the forcing amplitude and waveform,
respectively, and V0 is the base potential. Each forcing
waveform F has power P = 0.5. The current, propor-
tional to the dissolution rate, was measured by the po-
tentiostat at a rate of 200 Hz. When 1 kOhm resistance
was attached to the nickel wire, nonlinear current oscilla-
tions with a period of 2.11 s were obtained at V0 = 1.15
V as shown in the inset of Figure 3. In each instance of
the experiment, the PRC, such as the example in Figure
3a, was obtained using the pulse perturbation method
[10, 28]. The phase of the oscillation was obtained us-
ing the linear interpolation technique [2] by setting the
phase of the n-th current peak to 2πn. The transfor-
mation of the PRC as the circuit potential increases has
been previously analyzed in detail [28].

Using (12), an optimal fast entrainment waveform was
constructed for equal forcing and natural frequencies,
Ω = ω, in order to remove the effect of the frequency con-
trol constraint (6). When the optimal waveform with am-
plitude of A = 12.5 mV was applied to entrain the free-
running chemical oscillator, the phase difference between
the current oscillations and the forcing signal, shown in
Figure 4a, monotonically decreased until a final phase
difference of φf = 5.51 rad was attained after 30 seconds.

The behavior of the phase difference ∆φ(t) = φ(t)−φf
after 20 seconds can be closely described by an expo-
nential decay ln[∆φ(t)/∆φ(0)] = −kt, which is shown
in Figure 4b, with a rate of entrainment k = 0.243 s−1

for the optimal waveform. This rate was found to be
lower for other waveforms such as sine and the PRC Z
itself, as shown in Figures 4a and 4b. To compensate for
measurement errors and data processing inaccuracies, we
measured the rate k at 7 amplitudes A between 2.5 and
15 mV. The slopes κ of the k vs. A plots in Figure 4c
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FIG. 4. Electrodissolution experiments: (a) Phase difference
∆φ(t) for sine (dashed), PRC (thin), and optimal (thick)
forcing at A = 12.5 mV. (b) Semilog plot of ∆φ(t) from
(a). For t > 20 seconds after forcing is applied, ∆φ(t) de-
cays exponentially to zero. Rates of entrainment (slope of
the linear fits): k(sin) = 0.1093 s−1, k(Z) = 0.167 s−1,
k(optimal) = 0.243 s−1. (c) Rate of entrainment as a function
of forcing amplitude for sin (◦), PRC (4), and optimal (�)
forcing. The slopes κ in s−1mV−1 of the fitted lines character-
ize the performance of the waveforms for fast entrainment. (d)
Normalized entrainment rates predicted from PRC estimates
(blue: κ(sin)=0.68, κ(PRC)=0.89, κ(optimal)=2.00) and
measured experimentally (red: κ(sin)=1.19, κ(PRC)=1.39,
κ(optimal)=2.38) are highest for the optimal waveform.

correspond to −Λ′v(ϕ∗) for normalized PRC and v, and
are compared, along with values predicted using the es-
timated PRC for each experiment, in Figure 4d. The
optimal waveform performs significantly better.

The proposed technique for constructing optimal fast
entrainment waveforms can be applied to any nonlinear
oscillator, and requires no knowledge about its initial
state. Entrainment is achieved over the minimum num-
ber of cycles possible for a given control energy such that
phase model approximation and averaging remain valid.
The conditions required for such approximations to be
appropriate for entrainment have been explored in pre-
vious work [11, 21]. When the initial slow phase of the
system is far from a stable fixed point, several cycles may
be required for convergence to the phase-locked state to
be realized, and this occurs least on average for the op-
timal waveform. In contrast to previous studies on the
control of oscillators using phase models [7–10, 20, 21],
the derivative of the phase response curve (PRC) plays
an important role in addition to the PRC itself. The
methodology is promising for fast re-establishment of en-
trainment in oscillators that intermittently break phase
locking due to environmental or internal effects, such as
biological systems with fluctuations in chemical reaction
rates due to the small number of molecules in a cell
[29]. Finally, observe that our methodology is suitable
for weak phase resetting, while strong resetting requires
control approaches that do not depend on averaging but
involve substantial changes to the state of the oscillator.
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