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The dRGT theory of a single massive spin-2 field has a cutoff much below its Planck scale, be-
cause the extra modes from the massive spin-2 multiplet involve higher derivative self-interactions,
controlled by a scale convoluted from its mass. Generically, these correct the propagator by en-
vironmental effects. The resulting effective cutoff depends on the environmental parameters and
the spin-2 ‘graviton’ mass. Requiring the theory to be perturbative down to O(1) mm, we derive
bounds on the mass, corresponding to & O(1) meV for the generic case, assuming the coupling to be
given by the standard Newton’s constant, and somewhat weaker bounds in cases with fine-tuning.
Thus the theory of a single massive spin-2 can really only be viewed as a theory describing the full
nonlinear propagation of a massive spin-2 field on a fixed background, and not as an approximation
to GR.

What is the range of the gravitational force? Must it
be infinite, or could it be finite, by virtue of a graviton
mass-induced Yukawa suppression, like in massive gauge
theories? This question has been looming about a long
time, since the pioneering work by Pauli and Fierz [1],
the subsequent exploration by Boulware and Deser [2],
and its recent followup [3]. The problem one encounters
is that since mass breaks the residual gauge symmetries
of gravity, there are six new propagating degrees of free-
dom. Generically, one is a ghost. While [1] exorcised the
ghost away in the linearized limit, it seemed unavoidable
in the full theory [2, 3]. On the other hand, discovery
of cosmic acceleration [4] and the dearth of its theoreti-
cal explanations, save the landscape paradigm [5] (many
less satisfactory dark energies are reviewed in [6]) fueled
speculations that changing gravity away from General
Relativity (GR) may account for dark energy [7]. Hence
the question: can the graviton have a mass? becomes
more than just a mere theoretical curiosity.

Construction of classically consistent massive spin-2
theory has been difficult (for a review see [8]). Linearised
Pauli-Fierz (PF) theory [1] suffers from the vDVZ discon-
tinuity [9], and its linearized perturbation theory is un-
reliable. This can be improved by non-linear interactions
implementing the Vainshtein mechanism [10, 11]. How-
ever, typical non-linear completions have the sixth mode
Boulware-Deser ghost [2], in addition to the five massive
helicities of Poincare-invariant spin-2 theory. Many of
these issues are related to the dynamics of the helicity-0
component of the massive multiplet, hereon denoted π.

Very recently, it has been shown that many problems
can be avoided in a specific non-linear completion of PF
theory, known as dRGT [12, 13]. Classically, the dRGT
model does not propagate the troublesome sixth mode
[14]. Hence, it gives a consistent classical system with
massive spin-2 that can be used as a straw-man for phe-
nomenological purposes, with a definable perturbative
expansion at any order of truncation of the theory. How-
ever, the full taxonomy of the background solutions on

which to expand still does not exist (for some problems,
see [15, 16]). Nevertheless this theory has been advocated
to be a massive gravity that can approximate GR at phe-
nomenologically tested scales. Note that these theories
have been argued to be challenged by issues of causality
[24].

In this Letter we will address the strong coupling lim-
its on the spin-2 mass in dRGT. Since the theory has a
UV cutoff much below the Planck scale, if one wishes to
use it to approximate GR one must require it to be per-
turbatively well behaved at least between the distances
scales of O(1) mm, and the present Hubble scale, the
range where we have more or less found gravity to be
weak. Even more generally, if one abandons the desire
to use dRGT as a replacement for GR, the question of
its perturbative validity remains. We will show that de-
manding perturbativity places a bound on the mass of
the graviton, which is directly related to the UV cutoff.
We include environmental effects which affect the short
distance cutoff due to the higher derivative self interac-
tions of the π field.

To analyse short distance properties, we can ignore the
Yukawa suppressions, and focus on the dynamics of the
Stuckelberg field π, being guided by the Goldstone equiv-
alence theorem from massive gauge theory. In massive
spin-2 the (low) UV cutoff is (still) higher than the spin-
2 mass, and so there is a (broad) regime of scales where
this approximation is valid. We also ignore the dynamics
of the helicity-1 modes, assuming Lorentz invariance, so
that they decouple at the lowest order. We then compute
the effective action in the background fields of a source,
given by the dRGT spin-2/matter coupling. In case of
the Earth as the source, compatibility with the tabletop
experiments that probe gravity below mm [17] implies
that making the strong coupling scale high enough pulls
up the spin-2 mass much above the current Hubble scale.
In general, our formulas apply to any ghost-free Lorentz
invariant spin-2 setup that couples to some stress energy
tensor of lower spin matter, with numerical values deter-
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mined by the strength of the coupling and the amplitude
of a source.
Framework. The dRGT theory of spin-2 with massm

is described by the following action [12, 13]

S =
1

κ2

∫

d4x
√−g

[

R − m2

4
U(g,H)

]

+ Sm[gµν ; Ψn] ,

(1)
with spin-2 potential U and coupling κ, usually taken
to be the standard Newtonian coupling κ ∼

√
16πG ∼√

2/MPl. Sm is the action for matter fields, Ψn, min-
imally coupled to the ‘metric’ gµν . The tensor Hµν is
related to the metric as gµν = ηµν + κhµν = Hµν +
ηab∂µφ

a∂νφ
b where the four Stuckelberg fields φa trans-

form as scalars and ηab = diag(−1, 1, 1, 1). The potential
can be expressed using Kµ

ν = δµν −
√
δµν −Hµ

ν , so that we

have U(g,H) = −4
∑

n≥2 αnK[µ1

µ1
. . .Kµn]

µn ; [. . .] denotes
antisymmetrization, without the factor of 1/n!; helicity-0
field π is extracted using φa = xa − ηaµ∂µπ.
Let us work in the decoupling limit [12]: m,κ →

0, Tµν → ∞ with Λ3 = (m2/κ)1/3 and κTµν held fixed,
where Tµν = − 2√

−g
δSm

δgµν is the stress-energy tensor of the

source. The effective Lagrangian in this limit is [12]

L = −1

2
hµνEµναβhαβ +

3

2
π�π

− u

Λ3
3

ππ[µ
µ πν]

ν +
1

4Λ6
3

(u2 − 4v)ππ[µ
µ πν

νπ
α]
α

+
3v

Λ6
3

(

hµν − 1

3
hγ
γηµν

)

πµ[νπα
απ

β]
β +

uv

Λ9
3

πππ[µ
µ πν

νπ
α
απ

β]
β

+
κ

2
hµνTµν +

κ

2
πTα

α +
κu

2Λ3
3

∂µπ∂νπTµν , (2)

where u = −(1 + 3α3), v = − 1
2 (α3 + 4α4), πµν =

∂µ∂νπ and indices are raised/lowered with the fiducial
Minkowski metric. The operator Eµναβ is related to
the linearised Einstein tensor1. Note that we have per-
formed the following field redefinitions: π → π/Λ3

3,
hµν → hµν + πηµν +

u
Λ3

3

∂µπ∂νπ, the latter to diagonalise

the action up to cubic order. It is impossible to fully
diagonalise the theory in an explicitly local way.
Clearly, the interactions in (2) become strongly cou-

pled at the scale Λ3. For example, in DGP for a graviton
whose mass lies at the current Hubble scale, m ∼ H0 ∼
10−33 eV, in vacuum this occurs at distances <∼ 1000
km [18]. However, in the presence of a source with back-
ground fields, the quadratic Lagrangian in (2) will be
renormalized by the contributions from the higher dimen-
sion operators in (2) evaluated on the background. To
compute them, we model the source’s background field
with the spherically symmetric static solutions found in

1 Eµναβhαβ = δGµν = −
1

2
�
(

hµν −
1

2
hα
αη

µν
)

+ . . .

[19]. In the decoupling limit this background solution
is given by hµν = h̄µν , π = π̄ where, writing the fidu-
cial Minkowski metric in spherical coordinates with ra-

dius ρ and time t, one finds that h̄tt(ρ) =
∫ ρ

dz
h̄ρρ(z)

z ,

h̄ρρ(ρ) =
κM
8πρ + 2vρ2Λ3

3Q
3, and that Q = π̄′(ρ)

Λ3
3
ρ

satisfies

3Q−6uQ2+2(u2−4v)Q3−6vQ2

(

h̄ρρ

Λ3
3ρ

2

)

=
1

4π

(

ρV
ρ

)3

.

(3)

Here M is the mass of the source and ρV = (κM)
1
3

Λ3

its Vainshtein radius. If we require that the Vainshtein
shielding is efficient, such that that |π̄| ≪ |h̄µν | for
ρ ≪ ρV , a usual assumption in dRGT, for generic val-
ues |u|, |v| ∼ O(1), we must require v < 0 [19], in which

case we obtain Q ∼ O(1) and |h̄µν | ∼ O
(

κM
8πρ

)

, implying

|π̄| ≪ |h̄µν |, as desired. We see similar behavior when
|u| ≪ 1 and |v| ∼ O(1). For |u| ∼ O(1) and |v| ≪ 1
we have Q ∼ O(ρV

ρ ) and |h̄µν | ∼ O(κM8πρ), so again, the

Vainshtein mechanism is successful. Eq. (3) quantifies
the statement v ≪ 1. It must obey vQ2 < 1 (in this
limit it implies v < (ρ/ρV )

2 ∼ 10−22 for a Hubble mass
spin-2 with standard Newtonian coupling in Earth’s en-
vironment). So this region of phase space is an extremely
narrow sliver around the u-axis.

Working in the strict decoupling limit of Lagrangian
(2) would appear to disguise any connection with some
of the original parameters of the theory. However, here
we simply use this Lagrangian as describing the leading
order interaction of the full theory, omitting irrelevant
operators suppressed by scales between Λ3 = (m2/κ)1/3

and the Planck scale. In fact, one can easily check using
the exact results of [19] that these operators are sublead-
ing, and remain subdominant for the processes consid-
ered here.

Effective theory. Let us now determine the effective
theory in the background field of the source. This
means, we perturb about the background solution, set-
ting hµν = h̄µν + χµν , π = π̄ + ϕ and Tµν = T̄µν + τµν .
Working with the Lagrangian (2) and defining [r, s]µν =
rϕµ[νϕ

µ2
µ2

. . . ϕµr
µr
π̄ν1
ν1 . . . π̄

νs
νs]

+ sπ̄µ[νϕ
µ1
µ1

. . . ϕµr
µr
π̄ν2
ν2 . . . π̄

νs
νs]

and [r, s] = ϕµ1

[µ1
. . . ϕµr

µr
π̄ν1
ν1 . . . π̄

νs
νs]

, we obtain

δL = −1

2
χµνEµναβχαβ +

1

2
ϕKϕ

+
3v

Λ6
3

χµν([1, 2]µν − ηµν [1, 2]) + δLint + δLm , (4)

where

ϕKϕ =
6v

Λ6
3

h̄µν([2, 1]µν − ηµν [2, 1]) + ϕ
[

3�ϕ− 6u

Λ3
3

[1, 1]

+
3(u2 − 4v)

Λ6
3

[1, 2] +
20uv

Λ9
3

[1, 3]− κu

Λ3
3

T̄ µνϕµν

]

, (5)
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δLint = − u

Λ3
3

ϕ[2, 0] +
1

4Λ6
3

(u2 − 4v)ϕ(4[2, 1] + [3, 0])

+
uv

Λ9
3

ϕ(10[2, 2] + 5[3, 1] + [4, 0])

+
v

Λ6
3

(

h̄µν − 1

3
h̄α
αη

µν

)

[3, 0]µν (6)

+
v

Λ6
3

(

χµν − 1

3
χα
αη

µν

)

(3[2, 1]µν + [3, 0]µν) ,

δLm =
κ

2
χµντµν +

κ

2
ϕταα +

κu

Λ3
3

ϕπ̄µντµν − κu

2Λ3
3

ϕϕµντµν .(7)

Next, we diagonalize the bilinears by means of the non-
local field redefinition χµν = χ̃µν + 3vAµν , where Aµν =
− 2

Λ6
3

�−1
(

[1, 2]µν − 1
2ηµν [1, 2]

)

. First, we obtain:

δL = −1

2
χ̃µνEµναβχ̃αβ +

1

2
ϕKϕ

+
9v2

Λ6
3

Aµν ([1, 2]µν − ηµν [1, 2]) + δLint + δLm , (8)

We will neglect the non-local contribution to the scalar
propagator. The nonlocal terms are systematically
smaller from the contributions ∝ h̄µν inside the Vain-
shtein radius, as can be directly checked. We will also
neglect a new coupling to matter 3

2vκA
µντµν . κ

2ϕτ
α
α

introduced by the change of variables since r, ρ . ρV .
However, we emphasize this truncation may be unsuit-
able for studying this theory in the far infra-red p . m,
but that is not the regime we are interested in here.

The strong coupling scale To find the effective strong
coupling scale in the source’s background, Λ⊕, note that
the linearised fluctuations are described by

δLkin = −1

2
χ̃µνEµναβχ̃αβ − 1

2
ϕ(ξ∂2

t − P ij∂i∂j)ϕ , (9)

where

ξ = 3− 6u

Λ3
3

[0, 1] +
3

Λ6
3

(u2 − 4v)[0, 2] +
20uv

Λ9
3

[0, 3]

+
6v

Λ6
3

[

(ĥt
tπ̄

[i
i )

j]
j + (π̄k

i ĥ
[i
k )

j]
j + (π̄

[i
i ĥ

j]
k )

k
j

]

,

P ijkikj = 3|k|2 − 6u

Λ3
3

D[1,1](k) +
3

Λ6
3

(u2 − 4v)D[1,2](k)

+
20uv

Λ9
3

D[1,3](k) +
6v

Λ6
3

[

(ĥ
[i
j π̄

k
k)

l]
l kik

j

+ (π̄l
iĥ

[i
l )

j
jk

k]kk + k[iki(π̄
j
j ĥ

k]
l )

l
k

]

, (10)

and D[1,s](k) = kik[iπ̄
j1
j1
. . . π̄js

js]
, ĥµν = h̄µν − 1

3 h̄
α
αηµν .

Here we are assuming that the variation of the back-
ground is small compared to the variation of the fluctu-
ations. We also neglect the non-local contributions and

for simplicity set T̄µν = 0 outside the source2. The inter-
actions, schematically, are

I =
f(u, v)(h̄)a(χ̃)bϕc(�−1)d[α, β]

Λa+b+c−2d+3α+3β−4
3

. (11)

Now, to extract the strong coupling scale(s), we first
canonically normalise the kinetic term. Noting ξ, P ∼
O(1) + uO

(

∂∂π̄
Λ3

3

)

+ (u2 − 4v)O
(

∂∂π̄
Λ3

3

)2

+ uvO
(

∂∂π̄
Λ3

3

)3

+

vO
(

h̄∂∂π̄
ρ2Λ6

3

)

, when |u|, |v| ∼ O(1), the last term dominates

inside the Vainshtein radius and so ξ ∼ P ∼
(

ρV

ρ

)3

≫ 1.

The same is true when |u| ≪ 1, |v| ∼ O(1). In contrast,
when |u| ∼ O(1), |v| ≪ 1, π̄ ∝ ρ inside the Vainshtein
radius, and so π̄′′(ρ) ≪ π̄′(ρ)/ρ [20], which leads to a
hierarchy of eigenvalues for P . In particular, we find one

very large eigenvalue P1 ∼ ξ ∼ Q2 ∼
(

ρV

ρ

)2

, and two

smaller eigenvalues P2 ∼ P3 ∼ Q ∼ ρV

ρ

Thus, for |u|, |v| ∼ O(1) and |u| ≪ 1, |v| ∼ O(1),

the canonical scalar field is ϕ̂ ∼
(

ρV

ρ

)3/2

ϕ. Using

h̄ ∼ O
(

κM
8πρ

)

, and ∂∂π ∼ Λ3
3Q ∼ Λ3

3, an interaction

I =
f(u, v)

(

κM
8πρ

)a (
ρV

ρ

)− 3
2
(c+α)

(χ̃)bϕ̂c(�−1)d(∂∂ϕ̂)α

Λa+b+c−2d+3α−4
3

(12)
becomes strong at the scale

ΛI ∼ Λ3

[

(8π)a(ρΛ3)
a− 3

2
(c+α)

f(u, v)(κM)a−
1
2
(c+α)

]
1

b+c−2d+3α−4

. (13)

The theory clearly becomes nonperturbative at the low-
est such scale coming from any interactions present. It
turns out that the lowest strong coupling scale arises from
v
Λ6

3

(

h̄µν − 1
3 h̄

α
αη

µν
)

[3, 0]µν , so inserting a = 1, b = c =

d = 0, α = 3 into equation (13) we find the energy-
momentum cut-off (in units of inverse kilometres)

Λcut-off ∼ 1

km

(

m

H0

)1/5(
ρ⊕
ρ

)7/10 (
M

M⊕

)1/10

(14)

where ρ⊕ ∼ 6000 km and M⊕ ∼ 6 × 1024 kg are the
radius and mass of the earth respectively. The Hubble
scale, H0, is simply inserted to set units for the graviton
mass. If we apply (14) to Earth’s background to check
how dRGT compares to GR, we find that

Λ⊕ ∼ 1

km

(

m

H0

)1/5

. (15)

2 For explanation, see [22], which also addresses the concerns raised
in [23].
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This bound is very strong, even though the interaction
involves Earth’s weak Newtonian potential, h̄ ∝ ΦN be-
cause by locality and Lorentz symmetry there is a power
of MPl in the coupling to compensate one of the extra
powers of Λ3 in the denominator (the other two are com-
pensated by the momenta). So the coupling is enhanced
by the ratio MPl/Λ3 ≃ (MPl/m)2/3 which is ∼ 1040 for
Hubble mass gravitons. To conform with tabletop exper-
iments [17], in dRGT one must suppress Λ⊕ by a factor
of 106 to O(1) mm. This pushes the graviton mass up by
>∼ 30 orders of magnitude, to m >∼ 10−3 eV. So heavy a
spin-2 field would experience Yukawa suppression at dis-
tances longer than a millimeter, failing to conform with
GR at all currently tested scales [17]. Note, that the
precise form of the background metric is irrelevant here.
The only things needed are the form the interactions in
(2) and the scaling with the source’s potential which they
encode. Clearly, if the spin-2 is not required to approxi-
mate GR the bounds are weakened.
One might hope to find better behavior in the special

limits |u| ∼ O(1), |v| ≪ 1 when the helicity-2/scalar
mixing is absent when v = 0. However, while the mass
bounds are weaker, they are still significant. First, recall
that now there is a hierarchy of eigenvalues for P . Using
an orthogonal coordinate transformation to diagonalize
P , the kinetic term for the scalar is given by

δLkin ⊃ −1

2
ϕ(ξ∂2

t − P1∂
2
1 − P2∂

2
2 − P3∂

2
3)ϕ . (16)

We canonically normalise it by stretching two of the space

directions, (t̂, x̂1, x̂2, x̂3) =
(

t, x1, x2

√

ρV

ρ , x3

√

ρV

ρ

)

, and

defining ϕ̂ ∼ ϕ
√

ρV

ρ , which yields the interactions

d4x
ϕ[α, β]

Λ
3(α+β−1)
3

∼ d4x

(

ρV
ρ

)β− 1
2
(1+α)

ϕ̂(∂∂ϕ̂)α

Λ
3(α−1)
3

, (17)

where we have used the fact that ∂∂π ∼ Λ3
3Q ∼ Λ3

3

(

ρV

ρ

)

for the fine-tuned scenario. We focus on the processes
involving spatial momentum transfer, mediated by

d4x
u2 − 4v

Λ6
3

ϕ[2, 1] ⊃ d4x̂

[

O(1)

Λ3
3

(

ρV
ρ

)− 1
2

ϕ̂∂̂2
1 ϕ̂∂̂

2
⊥ϕ̂

+
O(1)

Λ3
3

(

ρV
ρ

)
1
2

ϕ̂(∂̂2
⊥ϕ̂)

2

]

(18)

where as in [21], we are using the stretched transverse
coordinates, denoted by ⊥= 2, 3. Then the analysis as
in [21] of the 2 → 2 scattering amplitude shows that the
theory is strongly coupled at momenta above

Λcut-off ∼ 1

20km

(

m

H0

)5/9( ρ3⊕M

ρ3M⊕

)1/18
(√

16πG

κ

)−1/18

(19)

with G Newton’s constant, and where we have taken ex-
tra care to include the appropriate recaling when switch-
ing back from stretched to physical coordinates3. Com-
paring dRGT to GR, on Earth with standard Newtonian
coupling κ ∼

√
16πG, yields

Λ
(k)
⊕ ∼ 1

20km

(

m

H0

)5/9

. (20)

A spin-2 with Hubble mass suffers from breakdown of
predictability due to quantum effects on scales of tens
of kilometres. This is stronger than the bound in DGP
on Earth [18] due to the coupling enhancement from the
quartic galileon-like piece in (2) evaluated on the back-
ground, of order ∼ π′/(Λ3

3ρ) ∼ ρV /ρ ∼ 1011. This term
also dominates in the eigenvalues of the background ma-
trix P , setting up the hierarchy which we find. Thus,
to push the strong coupling scale in this limit down to
the a millimeter we must require m & 10−15 eV. This
places the Vainshtein radius of the Sun at . 104 km,
well inside the orbit of Mercury, and also implying that
outside of the Solar System the full potential has Yukawa
suppression, in contrast with GR.

Summary We have shown that massive spin-2 dRGT
theory has strong coupling problems leading to loss of
predictivity at very low scales. This requires the mass
of a spin-2 field with GR couplings to be much higher
than the present Hubble scale. Hence the theory does
not approximate GR well at cosmological scales.

Acknowledgments: We thank G. D’Amico, A.
Geraci and G. Tasinato for discussions. NK thanks the
School of Physics and Astronomy, Univ. of Nottingham,
and YITP, Kyoto, Japan (YITP workshop YITP-T-12-
03), for hospitality in the course of this work. CB was
funded by a Univ. of Nottingham Anne McLaren fel-
lowship. NK is supported by the DOE Grant DE-FG03-
91ER40674. AP was funded by a Royal Society URF.

[1] M. Fierz and W. Pauli, Proc. Roy. Soc. Lond. A 173

(1939) 211.
[2] D. G. Boulware and S. Deser, Phys. Rev. D 6 (1972)

3368.
[3] N. Arkani-Hamed, H. Georgi and M. D. Schwartz, An-

nals Phys. 305 (2003) 96; P. Creminelli, A. Nicolis,
M. Papucci and E. Trincherini, JHEP 0509 (2005) 003.

[4] S. Perlmutter et al. [Supernova Cosmology Project Col-
laboration], Astrophys. J. 517 (1999) 565; A. G. Riess
et al. [Supernova Search Team Collaboration], Astron. J.
116 (1998) 1009.

3 Note, however, that the lowest strong coupling scale arises from
the first term in Eq. 18, and is given along the unscaled radial
direction.



5

[5] S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987); Rev. Mod.
Phys. 61 (1989) 1.

[6] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod.
Phys. D 15 (2006) 1753.

[7] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis,
Phys. Rept. 513 (2012) 1.

[8] K. Hinterbichler, Rev. Mod. Phys. 84 (2012) 671.
[9] H. van Dam and M. J. G. Veltman, Nucl. Phys. B 22

(1970) 397; V. I. Zakharov, JETP Lett. 12 (1970) 312.
[10] A. I. Vainshtein, Phys. Lett. B 39 (1972) 393.
[11] N. Kaloper, A. Padilla and N. Tanahashi, JHEP 1110

(2011) 148.
[12] C. de Rham and G. Gabadadze, Phys. Rev. D 82 (2010)

044020.
[13] C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev.

Lett. 106 (2011) 231101.
[14] S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108

(2012) 041101.

[15] G. D’Amico, arXiv:1206.3617 [hep-th].
[16] A. De Felice, A. E. Gumrukcuoglu and S. Mukohyama,

arXiv:1206.2080 [hep-th].
[17] D. J. Kapner et al., Phys. Rev. Lett. 98 (2007) 021101.
[18] A. Nicolis and R. Rattazzi, JHEP 0406 (2004) 059.
[19] K. Koyama, G. Niz and G. Tasinato, Phys. Rev. D 84

(2011) 064033.
[20] C. Burrage and D. Seery, JCAP 1008 (2010) 011.
[21] A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D

79 (2009) 064036.
[22] C. Burrage, N. Kaloper and A. Padilla, extended arXiv

version, arXiv:1211.6001 [hep-th].
[23] C. de Rham, G. Gabadadze, L. Heisenberg and D. Pirt-

skhalava, arXiv:1212.4128 [hep-th].
[24] S. Deser and A. Waldron, Phys. Rev. Lett. 110 (2013)

111101 [arXiv:1212.5835 [hep-th]].


