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Nicolis and Piazza have recently pointed out the existence of Nambu–Goldstone-like excitations in relativistic
systems at finite density, whose gap isexactlydetermined by the chemical potential and the symmetry algebra.
We show that the phenomenon is much more general than anticipated and demonstrate the presence of such
modes in a number of systems from (anti)ferromagnets in magnetic field to superfluid phases of quantum chro-
modynamics. Furthermore, we prove a counting rule for thesemassive Nambu–Goldstone bosons and construct
a low-energy effective Lagrangian that captures their dynamics.
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Introduction.—Trying to understand collective behavior of
matter in nonlinear many-body systems is a challenge com-
mon to many areas of physics. At long distances and low
temperatures, excitations with vanishing or small gap (mass)
dominate the dynamics. The concept of spontaneous sym-
metry breaking has been crucial for its understanding, as
it unambiguously predicts existence of gapless excitations—
the Nambu–Goldstone bosons (NGBs)—such as phonons or
magnons. For nearly five decades, however, their correct
counting and dispersion relations eluded consistent under-
standing. Recently, the present authors developed a unified
framework to determine the number and dispersion relations
of NGBs [1, 2], including their redundancies [3].

Cases where exact statements can be made about gapped
modes are rare though. Kohn’s theorem states that a gas of
charged particles with Galilean invariance, when exposed to a
uniform magnetic field, sustains a collective mode with the cy-
clotron gap [4]. Moreover, some soliton solutions to nonlinear
equations saturate Bogomol’nyi-Prasad-Sommerfield bounds,
allowing their energies to be determined based on symmetry
alone [5], albeit with limited applicability to observablesys-
tems. NGBs perturbed by explicit symmetry breaking effects
acquire small gaps and are usually called pseudo-NGBs [6].
Yet their gaps in general can be computed only approximately.

Recently, Nicolis and Piazza [7] pointed out that the gaps
of pseudo-NGBs can be determined in special circumstances.
Considering Lorentz-invariant systems perturbed only by a
chemical potential whose charge operator is spontaneously
broken, they showed that the masses of some pseudo-NGBs
can be computed exactly and are free of radiative corrections.
We will call such statesmassive NGBs(mNGBs). In the
present Letter, we show that mNGBs appear in a much broader
class of systems; the theory need not be Lorentz-invariant,or
the chemical potential operator spontaneously broken. We
provide a counting rule for the number of mNGBs and con-
struct an effective Lagrangian description for them.

General argument.—Consider a many-body system speci-

fied by the HamiltonianH with an internal symmetry group
G. In order to describe states with finite charge density, it
is customary to introduce a chemical potentialµ by H̃ ≡
H− µQ, whereQ is one of the generators ofG. The vacuum
|0〉 is defined as the eigenstate ofH̃ with the lowest eigen-
value. Without loss of generality, we can takẽH|0〉 = 0.
Since the generatorsQi of the Lie groupG commute with the
HamiltonianH, they are all time-independent in the Heisen-
berg picturedefinedbyH,

Qi(t) ≡

∫
dx eiHt−iP ·xj0i (0)e

−iHt+iP ·x, (1)

wherej0i (x) are the corresponding local charge densities.
When spontaneously broken, generators of the symmetry

groupG̃ of the full HamiltonianH̃ give rise to standard mass-
less NGBs. On the other hand, the observation made by Nico-
lis and Piazza guarantees existence of pseudo-NGBs, created
by spontaneously broken generators that do not commute with
Q, whose masses can be computedexactlyby group theory.

By the standard Cartan decomposition, explicitly broken
generators can be split into pairsQ±σ—the roots—such that

[Q,Q±σ] = ±qσQ±σ, (2)

whereQ±σ are some complex linear combinations of explic-
itly broken generators and(Q±σ)

† = Q∓σ. Let us now focus
on the quantityλσ ≡ 〈0|[Q+σ(t), j

0
−σ(0)]|0〉, which is man-

ifestly time-independent. Using Eq. (1), inserting a complete
set of eigenstates|n,p〉 of momentumP and energyH̃, and
carrying out integration over space, we obtain

λσ =
∑
n

e−i[En(0)−µqσ ]t|〈0|j0+σ(0)|n,0〉|
2

−
∑
n

ei[En(0)+µqσ ]t|〈0|j0−σ(0)|n,0〉|
2.

(3)

Provided thatµqσ > 0, time-independence of the left-hand
side andEn(0) ≥ 0 require〈0|j0−σ(0)|n,0〉 = 0 for eachn.
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If λσ is zero, implying〈0|j0+σ(0)|n,0〉 = 0 for eachn as well,
QσR ≡ Q+σ +Q−σ andQσI ≡ −i(Q+σ −Q−σ) cannot be
spontaneously broken. Namely, there is no local fieldΦ(x)
such that〈0|[QσR,I(t),Φ(0)]|0〉 6= 0.

On the other hand, ifλσ 6= 0, QσR andQσI are broken
spontaneously and there must be a state|n,0〉 with mass

H̃|n,0〉 = En(0)|n,0〉 = µqσ|n,0〉 (4)

such that〈0|j0+σ(0)|n,0〉 6= 0 and〈0|j0−σ(0)|n,0〉 = 0. This
is the mNGB associated with the pairQ±σ.

Our derivation clarifies several points on mNGBs. First,
the assumptions of the underlying dynamics being Lorentz-
invariant andQ being spontaneously broken [7] can clearly be
dropped. Also,λσ always plays the role of the order param-
eter for chargesQσR,I . Finally, 〈0|j0−σ(0)|n,0〉 = 0 for all
n meansQ+σ|0〉 = 0, while if λσ is nonzero,Q−σ|0〉 6= 0.
This observation leads to a simpler, albeit less rigorous, un-
derstanding of mNGBs. Eq. (2) gives[H̃, Q±σ] = ∓µqσQ±σ

which implies thatQ−σ|0〉 has energyµqσ. As there cannot
be a state with energy lower than the vacuum,Q+σ|0〉 has to
vanish. Our argument is reminiscent of Kohn’s theorem [4],
allowing for a unified comprehension of the two phenomena.

Number of mNGBs.—For a proper understanding of the
low-energy dynamics of the system, it is important to know
the number and dispersion relations of NGBs. Denoting the
broken generators of̃G asQ̃a, the former is given by [1, 2],

nNGB = nA + nB, nA = nBG − rank ρ̃, nB =
1

2
rank ρ̃,

(5)
wherenBG is the number of broken generators and

ρ̃ab ≡ −i lim
Ω→∞

1

Ω
〈0|[Q̃a, Q̃b]|0〉, (6)

Ω being the spatial volume. The type-A and B NGBs gener-
ally have linear and quadratic dispersions and correspond to
type-I and II in the Nielsen-Chadha theorem [8], even though
this is not always the case [9]. Each type-B NGB is described
by a canonically conjugate pair of broken generatorsQ̃a and
Q̃b with nonzeroρ̃ab, hence two broken symmetries count as
one degree of freedom, whereas type-A NGBs are stand-alone
like in the original Nambu–Goldstone theorem.

Here we address the question of counting the mNGBs [10].
Namely, we show that their number is given by

nmNGB =
1

2
(rank ρ− rank ρ̃), (7)

where the matrixρ is defined analogously to Eq. (6) for all
generators ofG instead of justG̃. To that end, we have to
further specify the structure of the Lie algebra. First, letus
choose the maximal number of mutually commuting genera-
tors of G̃, includingQ itself, to form the Cartan subalgebra.
By a proper choice of the vacuum|0〉, we can ensure that these
Cartan generators are the only generators ofG̃ that can have
a nonzero vacuum expectation value [1]. This alone does not

prevent the explicitly broken generators from acquiring ex-
pectation values. Yet,±µqσ〈0|Q±σ|0〉 = 〈0|[µQ,Q±σ]|0〉 =
〈0|[Q±σ, H̃]|0〉 = 0 thanks toH̃|0〉 = 0, so that〈0|Q±σ|0〉
must vanish for any nonzeroqσ. If we arrange the genera-
tors asQi = (Q1R, Q1I , . . . , QmR, QmI , Q̃1, . . . , Q̃dim G̃),
wherem ≡ (dimG−dim G̃)/2, the matrixρ becomes block-
diagonal,ρ = diag(2iτ2λ1, . . . , 2iτ2λm, ρ̃), τ2 being the sec-
ond Pauli matrix. Thus,12 (rank ρ−rank ρ̃) counts the number
of nonzeroλσ ’s. Assuming that there is at most one mNGB
for each pair ofQ±σ, this proves our counting rule (7). This
assumption is natural if we can identify the mNGB state with
Q−σ|0〉 in a suitable large-volume limit.

In the following, we provide examples of mNGBs, demon-
strating the validity of Eq. (7) in physically interesting sys-
tems [11].

Ferromagnet.—The Hamiltonian of a ferromagnet enjoys
the internalG = O(3) symmetry group of spin rotations. In
the ground state, individual spins are aligned, breaking this
symmetry down to itsO(2) subgroup. The two broken gen-
erators give rise to a single type-B NGB with a quadratic dis-
persion relation at low momentum—the magnon [2, 8].

Consider now switching on a uniform magnetic fieldB ori-
ented in thez-direction. This amounts to breaking the sym-
metry explicitly toG̃ = O(2) by adding to the Hamiltonian
−µmBSz (µmB > 0), whereS is the total spin operator
andµm is the magnetic moment. This term can be viewed
as a chemical potentialµ = µmB for the generatorQ = Sz.
Given that[Sz, S±] = ±S± whereS± ≡ Sx ± iSy, S− must
excite a mNGB of gapµ, which is just the magnon with en-
ergy lifted by the magnetic field [12]. The operatorS+ an-
nihilates the ground state. Both of these assertions are easy
to understand from the fact that the vacuum corresponds to
the state with maximum spin in the direction of the magnetic
field, and the magnon to an excitation caused by flipping one
of the spins. Note that the counting rule (7) predicts the cor-
rect number of mNGBs, that is,nmNGB = 2−0

2 = 1. Also, the
generatorQ in this example is not spontaneously broken, in
contrast to the assumption made in Ref. [7].

Antiferromagnet.—In the absence of a magnetic field, as-
sume the spins are oriented alternately along thez-axis;G =
O(3) is broken toO(2) just like in a ferromagnet. In this case
there are two type-A NGBs, one for each broken generator.

Applying a magnetic field along thez-axis leads to an insta-
bility as the NGBs attempt to acquire masses±µ = ±µmB.
The ground state rearranges with alternating spins pointing
in an orthogonal direction instead, say along thex-axis. Then
Q = Sz is a spontaneously broken generator which commutes
with H̃ and creates a gapless type-A NGB. On the other hand,
the pair of generatorsSx, Sy is explicitly broken, creating a
mNGB with gapµ. The magnetic field induces a small mag-
netization along thez-axis, and henceρxy = 〈0|[Sx, Sy]|0〉 6=
0. Consequently,nmNGB = 2−0

2 = 1, consistent with Eq. (7).
Such mNGBs have been discussed before in the context of the
electron spin resonance phenomenon [13].

Relativistic Bose-Einstein condensation.—As an explicit
example wherẽρ 6= 0, consider a theory of a complex scalar
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doubletφ with a globalG̃ = SU(2)×U(1) symmetry,

L = Dµφ
†Dµφ−M2φ†φ− λ(φ†φ)2, (8)

whereD0φ ≡ (∂0 − iµ)φ. This model features a relativis-
tic Bose-Einstein condensation (BEC) phase forµ > M , in
which the symmetry is spontaneously broken to aU(1)′ sub-
group. The three broken generators produce two NGBs, one
type-A and one type-B [14], consistent with Eq. (5), since one
of theSU(2) charges develops nonzero density in the ground
state, hencerank ρ̃ = 2.

The type-B NGB in this model has an “antiparticle”, car-
rying opposite charge. Its mass equals2µ and does not re-
ceive radiative corrections [15]. To see why, note that when
µ = 0, the Lagrangian enjoys an extended internal symmetry,
G = SO(4) ≃ SU(2)L × SU(2)R. This is most easily seen
by defining a2× 2 matrixΦ = (φ, iτ2φ

∗), which transforms
underG asΦ → ULΦU

†
R. Denote the generators ofG as~L and

~R, respectively; they are both given by a half of the Pauli ma-
trices. TheSU(2) rotations of the doubletφ now correspond
to SU(2)L; theU(1) phase transformations are generated by
2R3. The remaining two generators ofSU(2)R are explicitly
broken by the chemical potentialµ. In the BEC phase, the
condensate can be chosen as〈0|Φ|0〉 ∼ 11 so that they are also
broken spontaneously. Since theR± generators ofSU(2)R
satisfy the commutation relation[2R3, R±] = ±2R±, Eq. (3)
implies thatR− creates a mNGB with mass2µ, in agreement
with the explicit calculation. Indeed,mmNGB = 4−2

2 = 1.
This example obviously admits a generalization to a large
class of relativistic linear sigma models with chemical po-
tential [16, 17], the key ingredient being an extended global
symmetry when the chemical potential is set to zero.

QCD-like theories.—Quantum ChromoDynamics (QCD)
with two degenerate quark flavors possesses an approximate
globalSU(2)L × SU(2)R chiral symmetry. A nonzero quark
mass breaks this explicitly to theG = SU(2)V subgroup gen-
erated by~V ≡ ~R + ~L. The chiral condensate in the QCD
vacuum breaks the symmetry spontaneously in the same way,
resulting in three pseudo-NGBs in the spectrum: the pions.

Nonzero chemical potential,µI, for V3 breaks the exact
symmetryG further to itsG̃ = U(1)I subgroup, generated
by V3. While the mass of the neutral pion is insensitive to
µI , the masses of the charged pions becomemπ ± µI. Conse-
quently, onceµI > mπ, the positively charged pion undergoes
BEC, breaking the residual̃G symmetry spontaneously [18].
Therefore, the spectrum in the pion BEC phase exhibits one
true, type-A NGB. However, the ground state has a nonzero
isospin density,〈0|V3|0〉 = −i〈0|[V1, V2]|0〉, and Eq. (7) im-
plies that there is also one mNGB. Such a state has indeed
been found using effective field theory [19] as well as vari-
ous model approaches [17, 20] and can be identified with the
neutral pion in the superfluid medium. As opposed to these
approximate calculations, the result of Ref. [7] nevertheless
ensures that its mass is exactly equal toµI. This follows from
the commutation relation[V3, V±] = ±V±.

In the limit of massless quarks, the full symmetry be-
comesG = SU(2)L × SU(2)R; isospin chemical poten-

tial breaks this explicitly toG̃ = U(1)L ×U(1)R. Pion
condensate now develops at any nonzero chemical potential,
breakingG̃ spontaneously toU(1). Thus, there is one type-
A NGB in the spectrum. Moreover, given the commuta-
tors [V3, R±] = ±R± and [V3, L±] = ±L±, we find that
〈0|V3|0〉 = −2i〈0|[R1, R2]|0〉 = −2i〈0|[L1, L2]|0〉 6= 0, as
a result of which there are4−0

2 = 2 mNGBs according to
Eq. (7). This is consistent with explicit calculations; theaddi-
tional mNGB has the quantum numbers of theσ meson.

The presence of mNGBs has also been noted in the diquark
BEC phase of two-color QCD. In case of two quark flavors,
these are the three pions, with the mass equal to the baryon
chemical potential, as observed in analytic calculations [21,
22] as well as on the lattice [23]. An additional mNGB again
appears in the limit of massless quarks. Similar conclusions
can be reached for an arbitrary even number of flavors [21].

Effective Lagrangian formalism.—The effects of the chem-
ical potential can be captured by a low-energy effective field
theory (EFT). Assume first that atµ = 0, the symmetry group
G is broken spontaneously to its subgroupH . Insofar asµ is
much smaller than the scale of this breaking, it can be treated
as a perturbation. One constructs an EFT based on the coset
spaceG/H [12, 24] and introducesµ as a constant temporal
gauge field [25]; no additional free parameters are involved.
Assuming spatial translational and rotational invariance, the
lowest-order terms in the effective Lagrangian read [12]

Leff =ca(π)π̇
a + ei(π)µ

i +
1

2
ḡab(π)Dtπ

aDtπ
b

−
1

2
gab(π)∇πa ·∇πb.

(9)

Hereπa (a = 1, . . . , dimG/H) are NG fields, whilegab(π)
andḡab(π) are bothG-invariant metrics on the coset. Under
an infinitesimal symmetry transformation defined by a set of
parametersǫi (i = 1, . . . , dimG), the coset fields change as
δπa = ǫiha

i (π), whereha
i (π) are the Killing vectors of the

metrics. The covariant derivative isDtπ
a ≡ π̇a − µiha

i (π).
Explicit expressions can be obtained using the formalism

of Ref. [26]. Denoting now the broken group generators asTa

and the unbroken generators asTρ, we represent the coset el-
ement byU(π) ≡ eiTaπ

a

and define the Maurer-Cartan form
asωa(π) = Tiω

i
a(π) ≡ −iU(π)−1 ∂

∂πa
U(π). Then [27],

gab(π) = gcd(0)ω
c
a(π)ω

d
b (π), ei(π) = νji (π)ej(0),

ha
i (π)ω

b
a(π) = νbi (π), ca(π) = −ωi

a(π)ei(0),
(10)

whereνji (π) is defined byTjν
j
i (π) ≡ U(π)−1TiU(π). For

consistency with theG-invariance of the action, the effective
couplingsei(0) and gab(0) must satisfyf j

iρej(0) = 0 and
f c
ρagcb(0) + f c

ρbgac(0) = 0, wherefk
ij are the structure con-

stants ofG. Similar expressions hold for̄g. Using Eq. (10),
the effective Lagrangian is now completely fixed by the values
of gab(0) andḡab(0), encoding decay constants of the NGBs,
and ofei(0), expressing charge densities in the ground state.

With the effective Lagrangian at hand, one first has to deter-
mine the ground state triggered by the chemical potential; the
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coset parameterization can always be chosen so that this lies
at π = 0. Upon expansion in powers of the coset fields, the
effective Lagrangian can be used to calculate any observable
order by order in the derivative expansion.

Let us first consider systems withca 6= 0. For a consis-
tent derivative expansion, energy has to be counted as momen-
tum squared, hence the term with two time derivatives is sub-
leading. The leading-order potential is thus merelyV (π) =
−ei(π)µ

i. The chemical potential forces the ground state to
rearrange so thatei(0) is maximally aligned withµi, as in the
ferromagnet. Using the expressionsωi

a = δia −
1
2f

i
abπ

b + · · ·

andνji = δji −f j
iaπ

a+ 1
2f

k
iaf

j
kbπ

aπb+ · · · , we obtain the pre-
cise condition thatπ = 0 is a (local) minimum of the potential,
f i
abµ

bei(0) = 0, and the expansion of the Lagrangian to sec-
ond order in the fields,Leff =

1
2f

i
abei(0)(π̇

aπb −µjf b
jcπ

aπc)
plus terms with spatial derivatives. This is sufficient to assert
the existence of a mNGB with mass given by Eq. (4).

In theca = 0 case, the vacuum and mass spectrum are de-
termined by the term12 ḡab(π)Dtπ

aDtπ
b; energy now counts

as the first power of momentum. The potential takes the form
V (π) = − 1

2 ḡab(0)v
a(π)vb(π) wherevj(π) ≡ µiνji (π). The

ground state thus rearranges so that the chemical potentiallies
maximally in the subspace of broken generators, as in the anti-
ferromagnet. Particularly simple expressions can be obtained
when the cosetG/H is a symmetric space. Assuming that
the chemical potential lies completely in the broken subspace
[it is sufficient thatḡab(0)f b

cρµ
ρ = 0], the bilinear part of

the effective Lagrangian becomesLeff = 1
2 ḡab(0)(π̇

aπ̇b −
µaµcfρ

cdf
b
eρπ

dπe) plus spatial derivative terms. This again
leads to mNGBs in accord with the general argument.

Apart from the true NGBs and mNGBs, the EFT can predict
pseudo-NGBs whose masses arenotgiven by Eq. (4) [28]. For
such modes,limp→0〈0|j

0
±σ(0)|n,p〉 = 0 at fixed nonzeroµ,

thus not contributing toλσ, Eq. (3). In the limitµ → 0, their
masses vanish and they become true NGBs. Their number can
be inferred from known counting rules, namely as the number
of NGBs atµ = 0 minus the numbers of NGBs and mNGBs
at nonzeroµ, given by Eqs. (5) and (7).

When the chemical potential is large, perturbingG/H is
not adequate. One can then describe both NGBs and mNGBs
by an EFT based on theG/H̃ coset space,̃H being the un-
broken subgroup of the ground state in presence ofµ. In this
approach, effective couplings may implicitly depend onµ. In
terms of generators,G/G̃ is Kähler and symplectic, and hence
all generators ing/g̃ can be paired inρ, giving mNGBs. The
rest of generators iñg/h̃ represent true NGBs of either type.
In general, there may be other light modes, not automatically
captured by the EFT, whose masses are close to mNGBs [29].
Such modes have to be added to the EFT as matter fields [26].

In any case, the EFT reproduces the predicted masses of
mNGBs. Symmetry guarantees that the masses do not acquire
any higher-order corrections. Of course, the utility of theEFT
is not limited to the mass spectrum. The nonlinear structureof
the Lagrangian (9), dictated by symmetry, allows one to make
predictions for any other low-energy observable.
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