This is the accepted manuscript made available via CHORUS. The article has been published as:

Lifetimes of Antiferromagnetic Magnons in Two and Three Dimensions: Experiment, Theory, and Numerics
S. P. Bayrakci, D. A. Tennant, Ph. Leininger, T. Keller, M. C. R. Gibson, S. D. Wilson, R. J. Birgeneau, and B. Keimer
Phys. Rev. Lett. 111, 017204 — Published 3 July 2013
DOI: 10.1103/PhysRevLett.111.017204
Lifetimes of antiferromagnetic magnons in two and three dimensions: experiment, theory, and numerics

S.P. Bayrakci,1,∗ D.A. Tennant,2,3 Ph. Leininger,1 T. Keller,1 M.C.R. Gibson,2 S.D. Wilson,4 R.J. Birgeneau,4 and B. Keimer1
1Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
2Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
3Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
4Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
(Dated: June 11, 2013)

A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb$_2$MnF$_4$ and MnF$_2$, over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wavevector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data. Comprehensive understanding of magnon lifetimes in simple antiferromagnets provides a solid foundation for current research on more complex magnets.

PACS numbers: 75.30.Ds, 75.40.Gb, 75.50.Ee

The lifetimes of spin excitations in complex magnets, including quantum-disordered spin chains and ladders [1–5] and noncollinear antiferromagnets [6–8], have recently been the subject of considerable attention. The relative contributions of magnon-magnon scattering and various forms of disorder to the magnon lifetime have been of particular interest, as the same mechanisms are also responsible for the decay of thermal transport currents in magnets. Remarkably, however, our understanding of magnon lifetimes in simple, collinear, large-spin antiferromagnets has remained incomplete for decades. To provide a firm foundation for current research on more complex magnetic systems, we have reexamined this issue both experimentally and theoretically.

Dynamics in Heisenberg antiferromagnets have been studied very extensively by means of theoretical approaches such as hydrodynamics [9], dynamical scaling [10], and interacting spin-wave methods [11]. In the dilute magnon gas in two and three dimensions [12–17], the dominant damping processes are identified by diagrammatic perturbation theory to be elastic pair-wise collisions of magnons (see Fig. 1a-b): the transition rate is given by Fermi’s Golden Rule. Analytic formulae for the relaxation as a function of wavevector q and temperature T were derived for this mechanism (see Fig. 1). Following the discovery of high-temperature superconductivity in doped two-dimensional (2D) antiferromagnets, recent theoretical work has focused specifically on the differences between the behavior of magnons in two and three dimensions [13, 16, 18]. Surprisingly, in recent experimental studies of both 2D [19] and 3D [20] antiferromagnets, the measured linewidths disagreed considerably with predicted values, and anomalous additional line broadening at low temperatures that eluded explanation was observed. These findings provide additional motivation for a detailed investigation of the lifetimes of magnons in 2D and 3D antiferromagnets.

Rb$_2$MnF$_4$ [21] and MnF$_2$ [22] are near-ideal realizations of 2D and 3D antiferromagnets, respectively. Due to their structural and chemical similarity, they are a well-suited pair of compounds for comparison of linewidths in 2D and 3D. In these body-centered tetragonal systems, the magnetic interactions are dominated by the antiferromagnetic (AF) exchange coupling J between $S = 5/2$ Mn$^{2+}$ spins: for Rb$_2$MnF$_4$, between the 4 nearest neighbors in the ab-plane, and for MnF$_2$, between the 8 next-nearest neighbors (arranged at the corners of a tetragonal prism). A uniaxial anisotropy parameter D arising primarily from dipole-dipole interactions causes the spins in both compounds to align along the c-axis. The resulting dispersion relations in the two systems are very similar: the zone-boundary energy and energy gap at 4 K are 6.6 meV (along (q_00)) and 0.6 meV in Rb$_2$MnF$_4$, respectively [21], and 6.3 meV (along $(q00)$) and 1.1 meV for MnF$_2$ [23]. The Néel temperature T_N is 38.4 K in Rb$_2$MnF$_4$ and 67.6 K in MnF$_2$.

We used the high-resolution NRSE-TAS (neutron resonance spin-echo triple-axis spectroscopy) technique [24] to measure magnon linewidths in the ab-plane of these antiferromagnets (see Figs. 2–4). Temperatures ranged from 3 K up to 0.8 T_N (Rb$_2$MnF$_4$) and 0.6 T_N (MnF$_2$); the wavevectors spanned the full magnetic Brillouin zone (BZ). The neutron spectrometer and experimental methods used are as described in Ref. [20]. The mosaicity of the samples used was measured by means of gamma-ray diffractometry and found to be 0.44′ and 0.99′ for MnF$_2$ and Rb$_2$MnF$_4$, respectively. The MnF$_2$ sample was oriented in the $(hk0)$ scattering plane and the Rb$_2$MnF$_4$
The final neutron wavevectors measured, approximately as $\Gamma_{\text{mag}} \sim k^2$, then computed the corresponding linewidths $\Gamma_{\text{mag}}(q, T)$.

The results for both compounds are qualitatively similar to those found for q_s-magnons in MnF$_2$ [20]. A broad peak at 3 K of maximum value $\sim 6 \mu$eV at small q characterizes both data sets. We initially compared the results with analytical approximations for the magnon linewidth originating from two-in/two-out magnon collisions (see Fig. 1a). The corresponding expressions derived by Harris et al. (HKHH) [12] and Tyc and Halperin (TH) [13] apply to restricted regions of small wavevectors at low temperatures (see Fig. 1d). Their general low-temperature expressions, which contain no adjustable parameters and involve summations over the BZ, are intended for use at long wavelengths. Umklapp processes, which become increasingly important as q and T increase, are not treated properly in the scattering matrix elements.

We rederived the scattering matrix elements for general q, treating Umklapp processes correctly [27], and then computed the corresponding linewidths $\Gamma_{\text{mag}}(q, T)$ numerically. It became clear that “on-shell” computations do not give correct line broadenings, particularly near the zone boundaries, because of the curvature of the dispersion relation and the large density of states present there. For this reason, we evaluated $\Gamma_{\text{mag}}(q, T)$ self-consistently. We incorporated experimentally-measured values of the renormalized magnon energies into the calculation, and hence our results can be applied at higher temperatures than those considered by HKHH and TH. Through such calculations, we determined that incorrect treatment of Umklapp processes yields inaccurate linewidth results, even at small wavevectors and low temperatures. Independent of how these are treated, our numerical results differ considerably in magnitude from the analytical approximations, and thus numerical evaluations are indispensable even for the limiting cases of small q and low T.

The computations involve sums over p and q states, where $k + p = r + s$, $r = p - q$, and $s = k + q$. For p, a grid with density of $(81/(2\pi))^2 \times \text{pts} \cdot a^2$, with 64 times higher density in the central $1/8^{th}$ of the BZ, is used in the summation, weighted by the reciprocal space volume per point. The grid in q has a uniform density of $(81/(2\pi))^2 \times \text{pts} \cdot a^2$. Different grid sizes were checked to ensure that convergence occurred. Momentum conservation in the scattering process is achieved by the choices $r = p - q$ and $s = k + q$. To approximate the delta-function energy-acceptance window, a Lorentzian probability distribution $p(\Delta) = 1/(\pi\gamma[1 + (\Delta/\gamma)^2])$ is used ranged from 1.7 to 3.2 Å$^{-1}$.

In NRSE-TAS magnon linewidth measurements, accurate knowledge of the magnon dispersion is required in order to set the angles of the RF tilt coils correctly [20, 25]. Correspondingly, we measured the dispersion at all temperatures at which we measured linewidths (except where the change with temperature was not experimentally resolvable) [26].

The sample in the (hhl) scattering plane. The magnetic BZ used in MnF$_2$ was that centered around (010) and that in Rb$_2$MnF$_4$ around $\left(\frac{1}{2} \frac{1}{2} 0\right)$ (the latter in tetragonal crystal coordinates with $a = 4.216$ Å; this reflects K$_2$NiF$_4$-type magnetic ordering [21]). The final neutron wavevectors k_f are accessible in 3D; their area is comparable to that shown for TH.
used, where $\Delta = \omega(k) + \omega(p) - \omega(r) - \omega(s)$ is the deviation from the conserved result, and the width γ is determined by the lifetimes of the “intermediate” spin-waves involved in the scattering process, viz. $\gamma = \gamma_p + \gamma_r + \gamma_s$ [12], where the intermediate line broadenings are interpolated for the relevant wavevectors from those previously computed. To speed up the calculation, the Lorentzian is truncated at $\pm 4\gamma$, with its amplitude adjusted correspondingly to preserve unit area. Self-consistent calculations are performed by choosing an initial narrow linewidth that is uniform in wavevector and then iterating. Iterations were performed until the results converged to within 0.4% (for MnF$_2$) or 1% (for Rb$_2$MnF$_4$), over the full range of wavevector and temperature.

An additional potential scattering process consists of a non-momentum-conserving collision of a magnon with a boundary (e.g. a grain boundary, antiferromagnetic domain wall, or microcrack in the crystal). A rough estimate of the associated magnon lifetime for such a process is $\tau_b = L/(2v(q))$, where L is the size of the grain, domain, or microcrystallite and $v(q)$ is the magnon velocity [28]. The corresponding additive contribution $\Gamma_b = \hbar \tau_b^{-1}$ to the overall linewidth exhibits a peak at low q that is similar to that in the 3 K data (see Fig. 3). We fitted these data to the corresponding expression after first subtracting off the calculated Γ_{mag}. Using the measured magnon dispersion data, we obtained an average L of $0.58 \pm 0.04 \mu m$ for Rb$_2$MnF$_4$ and $0.50 \pm 0.04 \mu m$ for MnF$_2$. The latter is consistent with the antiferromagnetic domain size of $0.63 \pm 0.05 \mu m$ obtained from independent high-resolution neutron Larmor diffraction measurements performed on the same MnF$_2$ crystal at 5 K [26].

Under the assumption that L remains constant at all temperatures, we calculated Γ_b for higher temperatures (again using the measured magnon dispersion data). The corresponding temperature dependence is small: less than 10% of the 3 K values, over all q, at the highest temperatures measured for MnF$_2$, and less than 5% for Rb$_2$MnF$_4$.

The fits to the 3 K data can be improved by adding a small, temperature-independent constant (or such a constant plus a positive, temperature-independent slope) to the above contribution from 2-magnon scattering (see Fig. 3). This constant is found to be $2.1 \pm 0.4 \mu eV$ for MnF$_2$ and $1.7 \pm 0.3 \mu eV$ for Rb$_2$MnF$_4$. The corresponding values of L are $1.4\pm0.8 \mu m$ for MnF$_2$ and $1.0\pm0.2 \mu m$ for Rb$_2$MnF$_4$. Such an offset could reflect either an additional source of linewidth broadening or a systematic experimental error of as-yet undetermined origin.

One mechanism that could cause a line broadening of this order of magnitude is scattering from the finite width of the crystal boundaries discussed above. The fractional effect of such scattering on the magnon energy E_q is on the order of $(\delta L/L)E_q$, where δL is the width of the boundary. If we take δL to be one lattice constant, the corresponding change in magnon energy is on the order of $1 \mu eV$ at the zone center and $7 \mu eV$ at the zone boundary.

A mechanism that could potentially produce a linewidth that increases monotonically along the a-axis direction is 4-magnon scattering in which the electronic magnons collide with nuclear spin-waves; however, this contribution is likely to be more than an order of magnitude too small [29]. Other mechanisms which may contribute, all of which are estimated to be at least an order of magnitude too small to explain the data, were summarized earlier [20].

The total calculated linewidth $\Gamma = \Gamma_{mag} + \Gamma_b$ agrees
well with the data (Figs. 2-4). In Rb$_2$MnF$_4$, the agreement worsens with increasing T at intermediate q (0.025 - 0.15 r.l.u.); in MnF$_2$, for all q, and the discrepancy is largest at intermediate q (0.2 - 0.4 r.l.u.). Additional scattering channels may become important at higher temperatures. One candidate is 6-magnon (three-in/three-out) scattering, which was posited to provide the dominant contribution to the antiferromagnetic resonance linewidth in high magnetic fields at temperatures above $T_N/2$ in Rb$_2$MnF$_4$ [30] and MnF$_2$ [31].

Selected linewidth data from which the fitted curves to the 3 K data (Fig. 3) have been subtracted are compared in the main panel of Fig. 4b. The exponents from (phenomenological) power-law fits for these and additional values of q/q_{ZB} are shown in the inset. The q-dependence of the exponents is non-monotonic; the values for the two compounds agree within error at low q, and diverge near the respective zone boundaries. The exponent for Rb$_2$MnF$_4$ there is 2.6 ± 0.1, which is not too different from Kopietz’ analytical result of 3 for the isotropic case (derived from approximations made to simplify the general expression of TH at the zone boundary) [16], though the region of validity of his approximations lies lower in temperature than our data (see Fig. 1d).

Broadening resulting from longitudinal spin fluctuations [14] was earlier reported to describe the magnon linewidths in MnF$_2$ [32]. At the temperatures considered [14], the longitudinal fluctuations are in fact composed to a large extent of mobile spin-waves, and thus collisions with these fluctuations are equivalent to the magnon-magnon scattering events calculated in more detail here. The self-consistent numerical evaluations of scattering within the spin-wave gas performed in the current work thus replace both prior comparisons with the theory in 3D.

Comparison of the hydrodynamic prediction with our data can be done where sufficient data for a power-law fit falls within the low-q, low-T domain of validity of the
hydrodynamic theory [9]. In our measurements, this applies only to MnF$_2$ at 25 K (the upper limit of the range of validity), where we obtain an exponent of 2.2 ± 0.1. Over the range from 15 - 40 K, this exponent ranges from 1.9 - 2.2. Hydrodynamics is expected to break down in 2D [13]; in Rb$_2$MnF$_4$, the exponent ranges from 1.1 - 1.3 from 16 - 23 K (however, these temperatures lie above the domain of validity).

In summary, comprehensive comparison of experimental data and numerical results suggests that the processes that determine the magnon lifetime in 2D and 3D antiferromagnets are two-in/two-out magnon collisions and boundary scattering. The difference between 2D and 3D systems is thus quantitative, not qualitative: it originates from the difference between near-cylindrical and ellipsoidal (near-spherical) surfaces of constant magnon energy with respect to the conservation of energy and momentum in 4-magnon collisions.

The seminal theories of 4-magnon scattering considered here could not previously be compared realistically and quantitatively with experimental data. This limitation is relieved here through proper inclusion of the Umklapp scattering and the use of numerical evaluations, permitting the first complete experimental and theoretical description of magnon linewidths over broad ranges of wavevector and temperature in two and three dimensions. The quantitative understanding of prototypical antiferromagnets that we have obtained provides a solid basis for investigations of the influence of noncollinearity, disorder, and doping in more complex magnetic systems [1–8]. Comprehensive, momentum-resolved linewidth data that are described accurately by theory also enable the first calculation of the magnon-mediated thermal conductivity without adjustable parameters [33].

We thank K. Hradil, G. Eckold, J. Major, A. Weible, I. Sorg, E. Brücher, and K. Buchner for technical assistance. This work is based upon experiments performed on the TRISP instrument operated by the MPG at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany. The work in Stuttgart was supported by the German Science Foundation under grant SFB/TRR 80. The work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

* bayrakci@fkf.mpg.de

[27] The interaction coefficients $\Phi^{(1)}_{1234}$ and $\Phi^{(4)}_{1234}$ in the interaction term of the diagonalized Dyson-Maleev Hamiltonian used by HKHH are defined in Eqsns. 2.18a and 2.18d of Ref. [12] and used to calculate the magnon linewidth by means of Eqsns. 2.39 and 2.38 [12]. Our expressions for these coefficients differ from those of HKHH: we find $\Phi^{(1)}_{1234} = \gamma_1 - 4\gamma_1X_4 + \gamma_1 - 3\chi_1X_3 + 2\gamma_3 - 4\chi_2X_4 + 2\gamma_3 - 3\chi_2X_3 - \gamma_4 - 4\chi_2X_3X_4 - \gamma_3 + 4\chi_1X_3X_4 - \gamma_2 - 3\chi_2X_4 - 2\chi_4 + 2\chi_4 + 2\chi_4 - \chi_4X_2X_3X_4$ and $\Phi^{(4)}_{1234} = \gamma_2 - 4 + 7\gamma_1X_2 + 2\chi_4 + 2\chi_4X_2X_3X_4 + 2\gamma_3 - 3\chi_2X_4 + 2\gamma_3 - 3\chi_2X_4X_3X_4 + 3\gamma_4 - 3\chi_2X_4 + 3\gamma_4 - 3\chi_2X_4X_3X_4 + 2\gamma_3 - 3\chi_2X_4$ where γ, χ, and q_4 are defined as in Ref. [12]. Each wavevector (represented by a subscripted number) is restricted to the first Brillouin zone, and the sum of wavevectors is taken with no back-folding. See Supplemental Material for further details.