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We study RKKY interaction in non-Fermi liquid metals. We find that the RKKY interaction
mediated by some non-Fermi liquid metals can be of much longer range than for a Fermi liquid. The
oscillatory nature of RKKY interaction thus becomes more important in such non-Fermi liquids,
and gives rise to enhanced frustration when the spins form a lattice. Frustration suppresses the
magnetic ordering temperature of the lattice spin system. Furthermore, we find that the spin
system with longer range RKKY interaction can be described by the Brazovskii model, where the
ordering wavevector lies on a higher dimensional manifold. Strong fluctuations in such model lead
to a first-order phase transition and/or glassy phase. This may explain some recent experiments
where glassy behavior was observed in stoichiometric heavy fermion material close to a ferromagnetic
quantum critical point.

Introduction: When magnetic moments are placed
in a metal, the conduction electrons mediate an indi-
rect interaction between these moments. Such a long
rang interaction is called the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction. RKKY interaction plays
crucial roles in, e.g., heavy fermions, diluted magnetic
semiconductors, graphene. The usual derivation of the
RKKY interaction is based on the assumption that the
conduction electrons form a Landau Fermi liquid (FL).
However many strongly correlated electron systems show
non-Fermi liquid (NFL) behavior, e.g. cuprates, heavy
fermions, pnictides. The question we ask here is what is
the form of RKKY interaction in a NFL metal, and what
are the consequencies.

Of particular interest are heavy fermion systems, where
local moments couple to the conduction electrons. The
Doniach phase diagram with competing Kondo coupling
and RKKY interaction has been the paradigm for heavy
fermions for decades [1]. In the last few years, as experi-
mental results accumulate, there is a growing necessity to
go beyond the Doniach phase diagram. Frustration or the
quantum zero point energy has been proposed as a new
dimension in the global phase diagram of heavy fermions
[2–6]. One obvious origin of frustration is frustration of
lattice structure itself. However such geometric frustra-
tion is not universally observed in heavy fermion mate-
rials. Here we propose that the NFL nature of conduc-
tion electrons in the Kondo liquid phase leads to intrinsic
frustration for the localized spin degrees of freedom. This
provides a more universal source of frustration.

Our approach is based on the idea of quantum critical-
ity and NFL behavior. The standard picture is that the
critical fluctuations near a quantum critical point (QCP)
lead to NFL behavior. Here we depart from this picture
by starting with the assumption that in a certain range
of the parameter space, the itinerant electrons form a
NFL state. We then proceed to study its consequences
on other degrees of freedom, e.g. the localized spins. Fo-
cusing on the regime with small Kondo coupling, i.e. a
small Fermi surface, we find that the magnetic transition
temperature will be reduced by the frustration resulting
from longer-range RKKY interaction produced by NFL
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FIG. 1: Schematic electronic (a) and magnetic (b) phase dia-
grams for a Kondo lattice model with strongly interacting con-
duction electrons coupled to localized spins. (a): Crossover
from FL to NFL behavior. x represents non-thermal tun-
ing parameter, e.g. pressure, magnetic field, doping. Dis-
tance dependence of RKKY interaction is shown in the in-
sets. (b): Magnetic transition temperature decreases with
increasing frustration resulting from NFL-mediated longer-
range RKKY interaction. New phases (shaded region), e.g. a
glass phase, emerge near the putative QCP.

itinerant electrons. Furthermore, we find that the pu-
tative ferromagnetic (FM) QCP may be replaced by a
first-order phase transition or a glassy phase [7,8] (see
Fig. 1).

Formalism: We start with the Kondo lattice model,
H = HC + HK . Here HC is the conduction elec-
tron Hamiltonian, and ususally only the hopping term
is included. The Kondo coupling between conduction
electrons and localized spins is of the form, HK =

−JK2
∑
iαβ Si · c

†
iασαβciβ . We depart from the usual

approach by considering the conduction electrons to be

strongly interacting themselves, i.e. HC = H
(0)
C +H

(int)
C .

One way to motivate this is to consider the phenomeno-
logical two fluid model [9–12]. In many heavy fermion
systems, below the coherence temperature T ∗, the ex-
perimental results can be understood in terms of the
two fluid model, with one component the itinerant heavy
electrons, and the other component local moments. The
heavy electron Kondo liquid is not a simple FL, e.g. the
specific heat is logarithmically enhanced at low temper-
ature. One has a model of interacting itinerant electrons
coupled with localized spins.
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The itinerant electrons induce a RKKY type interac-
tion among the localized moments:

HRKKY =
∑
ij

Jabij S
a
i S

b
j . (1)

Here the coupling Jabij = −J
2
K

4 χ
ab
ij [13–15], is determined

by the static spin susceptibility of the conduction elec-
trons

χabij = − i
~

∫ ∞
0

〈[sa(ri, t), s
b(rj , 0)]〉e−ηtdt, (2)

with the electron spin sa(ri) =
∑
αβ c

†
iασ

a
αβciβ and η =

0+. If the conduction electrons are in the paramagnetic
state, the spin susceptibility is isotropic and diagonal, i.e.
χabij = χ(rij)δ

ab. For FL, the spin susceptibility behaves

as χ(r) ∼ (1/rd) cos(2kF r+ θ0) at long distances, with d
the spatial dimension. This leads directly to the standard
form of the RKKY interaction. The exponent d results
from the sharp jump in the momentum distribution n(k),
characteristic of FL. For NFL metals, the RKKY inter-
action can have qualitatively different behavior. We still
assume the existence of a Fermi surface, i.e. a singularity
in n(k), thus the spin susceptibility still has 2kF oscilla-
tion. The exponent can take a different value. Thus we
have χ(r) ∼ (1/rα) cos(2kF r+θ0). More detailed studies
of the NFL spin susceptibility will be presented below.

Consider placing a lattice of spins in the NFL metal.
We focus on the effect of the RKKY interaction on the
spin system, and will not consider the competition be-
tween Kondo coupling and RKKY interaction [1]. This
can be achieved by assuming the spins to be classical,
or considering only the part of the phase diagram with
a small Fermi surface. With S(q) = (1/N)

∑
i Sie

iq·ri ,
one has in momentum space, H =

∑
q F (q)S(q) ·S(−q),

where

F (q) =
1

N

∑
ri 6=0

J(ri)e
iq·ri , (3)

with ri defined on the lattice. The ordering wavevec-
tor in the ground state is determined by minimizing the
function F (q).

For the conventional three dimensional RKKY inter-
action mediated by FL, this problem has been studied
in [16], where different phases have been identified as
the conduction electron density changes. At small kFa,
where a is the lattice constant, the ground state is fer-
romagnetic. As kFa increases, antiferromagnetic phases
with different ordering wavevectors appear. In the case
kFa → 0, the above summation can be replaced by an
integral, and F (q) ∼ −χ(q). The ordering wavevector is
thus determined by maximizing the static spin suscepti-
bility.

Now we consider in more detail what is the form of the
static spin susceptibility in a NFL metal. When vertex
corrections can be ignored, the spin susceptibility can
be calculated from the fermion bubble, with χab(q) ∼

∫
σaG(k + q)σbG(k). When the momentum distribution

n(k) has a weaker singularity than a jump at kF , e.g. a
kink, the single particle density matrix n(r) decays faster
than that of FL (see Supplemental material). Then one
expects χ(r) and J(r) to decay faster than that of FL.
An interesting question is whether it is possible to have
longer range RKKY interactions, which would generate
the desired frustration among the spins [2–6]. We will
present two models of NFL metals that can give rise to
such behavior.

Longer range RKKY interaction in 1-d: First,
as a proof of principle that RKKY interaction in a
strongly interacting electron system can be of longer
range than in a free system, let us first consider 1-d. In 1-
d, RKKY interaction mediated by free electrons is of the
form J(r) ∼ Si(2kF r)− π

2 , with the sine integral function
Si(x). At large distance one has J(r) ∼ cos(2kF r)/r. In

momentum space, one has χ(q) ∼ (1/q) ln | q+2kF
q−2kF |, with

a maximum at q = 2kF .
The low energy dynamics of interacting electrons in 1-d

is described by the Luttinger liquid theory. Due to spin-
charge separation, the conduction electron Hamiltonain
can be written as a summation of the two channels [17],

HC =
∑
α=c,s

vα
2

∫
dx[gαΠ2

α + g−1α (∂xθα)2], (4)

with vc and vs the velocity of charge and spin den-
sity wave, respectively. The charge interaction constant
gc = 1 for noninteracting fermions, gc < 1 for repulsive
interaction, and gc > 1 for attractive interaction. We are
interested in the case with repulsive interaction. The spin
interaction constant gs = 1 in the presence of SU(2) spin
symmetry. The oscillating part of the spin correlation
function is [17]

〈s(x, τ) · s(0, 0)〉 ∼ cos(2kFx)

|τ + ix/vc|gc |τ + ix/vs|gs
. (5)

The RKKY interaction, determined from the static spin
susceptibility, is of the form

J(x) ∼
∫
dτ

cos(2kFx)

|τ + ix/vc|gc |τ + ix/vs|gs
∼ cos(2kFx)

xgc+gs−1
.

(6)
For gc < 1, gs = 1, the exponent α = gc+gs−1 < d = 1.
The RKKY interaction mediated by a Luttinger liquid
is thus of longer range than that mediated by a non-
interacting Fermi gas59.

Spin susceptibility in 2-d: Now we consider 2-d
metals. For free electrons, the static spin susceptibility
reads

χ(q) =

{
χ0 for q < 2kF

χ0

[
1−

√
1− (2kF /q)2

]
for q > 2kF ,

(7)

with χ0 = 1/π, which has a one-sided square-root sin-
gularity. The RKKY interaction is thus of the form
J(r) ∼ sin(2kF r)/r

2. For a 2-d FL, including higher
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FIG. 2: (a) The static spin susceptibility χ(q) as a func-
tion of momentum for a FL (dashed, black) and the gauge-
fermion model with σ < 1/3 (dotted, blue) and σ > 1/3
(solid, red). (b) F (q) as a function of momentum for an-
gles θ = 0, π/6, π/4. The curves for different angles are al-
most identical. Here the spins form a square lattice, and
σ = 1/2, kF a = 0.2.

order diagrams, there is also a square-root singularity for
q < 2kF , with χ(q) = χ(2kF ) + χsing(q) [18], and

χsing(q) = A
√

1− (q/2kF )2. (8)

The new singularity gives contribution δχ(r) ∼
[(2kF r) cos(2kF r) − sin(2kF r)]/r

3, and will not change
the long distance behavior of the RKKY interaction.

A prototype of NFL metal in higher dimensions is the
system of 2-d degenerate fermions interacting via a sin-
gular gauge interaction [19–26], where the presence of the
gauge interaction leads to singular 2kF response [23].60

The fermion 2kF vertex Γ2kF has a power law dependence

on frequency, with Γ2kF ∼
(
EF
ω

)σ
Γ0
2kF

. The exponent is

of the form σ = 1
2N + 1

2π2N2 ln3N +O
(

1
N2

)
for large N ,

and σ = 16
√
2

9π
√
N

+O (1) for small N . Here the spin index

is generalized to take values from 1 to N . Taking N = 2,
one obtains σ = 0.25 from the large-N expansion, and
σ = 0.56 in the small-N limit.

The spin susceptibility is calculated from the po-
larization bubble with vortex corrections61, χ(q, ω) '
Π(q, ω) =

∫
dpdεG(p + q/2, ε + ω/2)G(p − q/2, ε −

ω/2) [Γεp(q, ω)]
2
. For σ < 1/3, the static spin suscep-

tibility is of the form [23]

χ(q) ∼ χ0 − C|q − 2kF |1−3σ, (9)

and for σ > 1/3 one has [23]

χ(q) ∼ 1

|q − 2kF |3σ−1
, (10)

with a singularity at q = 2kF (see Fig. 2(a)). Fourier
transforming to real space, we find

χ(r) ∼
∫

1

|q − 2kF |3σ−1
J0(qr)qdq ∼ cos(2kF r − θ0)

r5/2−3σ
.

(11)
The exponent α = 5/2 − 3σ can be much smaller than
the space dimension d = 2.

More generally, for NFL metals, one can employ a scal-
ing theory for the susceptibility (see e.g. [27,28]). As-
suming the existence of a Fermi surface, the static spin

susceptibility generally has a power law behavior near
q = 2kF , with χ(q) ∼ |q − 2kF |ν . For ν < 1/2, one has
a stronger singularity than the FL case, and the RKKY
interaction is of longer range.
Longer range RKKY interaction in 2-d: Let

us now consider the ground state of the spins embed-
ded in 2-d metals with small kFa. For the FL case
(Eqs.(7,8)), χ(q) increases monotonically with decreasing
q (see Fig. 2). The ground state is ferromagnetic. For
NFL (Eqs.(9),(10)), the maximum of χ(q) is at q = 2kF ,
and the ferromagnetic state is no longer the ground state.
More precisely, one can calculate the interaction F (q) by
first Fourier transforming χ(q) to real space to get χ(r),
and then performing the lattice summation in Eq. (3).
For simplicity we consider here the case of conduction
electrons having an isotropic Fermi surface62. The result
for σ = 1/2 is shown in Fig. 2(b). One can see that F (q)
has a minimum at q = 2kF . The singularity in χ(q) is
smeared out by the lattice effect.

Another observation is that F (q) has a very weak de-
pendence on the direction of momentum. In Fig. 2(b),
F (q) for the three different angles are almost indistin-
guishable. With the minimum of F (q) at q0 = 2kF , the
ordering wavevector of the lattice spin system lies on a
shell of radius 2kF . Expanding F (q) around q0, one ob-
tains the Brazovskii model [29],

H =
∑
q

[
b0 +D (|q| − q0)

2
]
S(q) · S(−q). (12)

Brazovskii found that the large phase space available for
fluctuations around a shell of minima leads to a first-
order phase transition [29]. It has been found experi-
mentally that putative FM-QCPs are replaced by first
order transitions at low temperatures in several transi-
tion metal compounds, e.g. MnSi, ZrZn2, and heavy
fermion systems, e.g. UGe2, UCoAl, UCoGe (see [30]
and references therein). It was realized earlier that com-
peting orders [31] as well as fluctuations [32–35] can lead
to first order quantum phase transitions. Here we find
a new mechanism where the frustration resulting from
NFL behavior can generate first order transitions.

A further observation is that the extensive configura-
tional entropy in the Brazovskii model should lead to
slow dynamics and glassiness [36–39]. Glassy correla-
tions emerge when the correlation length ξ = (D/b)1/2

becomes of order the modulation length l0 = 2π/q0 [37].
The parameter b needs to be determined self-consistently.
Within the large-N approximation, and including a small
quartic term with coupling u, we have

b = b0 + uT

∫
d2q

(2π)2
G(q), (13)

with the Green’s function G(q) = 1/[b + D (q − q0)
2
].

The condition ξ/l0 ∼ 1 then determines the temperature

where glassy behavior sets in to be Tg ' 2πD2

u
q20−b0/D
c1−log(q0a) ,

with the coefficient c1 of order unity and momentum cut-
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off Λ ∼ a−1. We notice that here Tg depends logarithmi-
cally on cutoff instead of the 1/Λ dependence for the 3-d
model considered in [37].

Glassy spin dynamics was recently observed in the
heavy fermion system CeFePO [40]. CeFePO is a layered
Kondo lattice system, in close proximity to a FM QCP.
Spin-glass-like freezing was detected in the ac suscepti-
bility, specific heat and muon-spin relaxation [40]. The
glass behavior in such a stoichiometric system points to
new mechanisms that do not depend on external random-
ness. Our model provides such a possibility (see [41–46]
and references therein for earlier attempts to obtain glass
behavior from frustrated deterministic models).

Away from QCP: We proceed to study the lattice
spin system away from QCP, to see how the change of
interaction range affects magnetic ordering. Due to the
cosin function, the RKKY interaction changes sign and
magnitude with distance. It can be well approximated

by a random interaction [47–50], Jij ∼ J2
K

4
εij
rα , where εij

is a random variable with cosine distribution P (εij) =

(1/π)(1− ε2ij)−1/2.
When the itinerant electrons are away from the QCP,

there is a crossover to FL behavior at low energy, or
equivalently long distance, where the RKKY interaction
is substantially reduced. We will assume for simplicity
that the RKKY interaction can be neglected beyond a
crossover scale rFL. Then the exchange interaction is of
the form

Jij =

{
Aεij/|ri − rj |α for |ri − rj | < rFL

0 for |ri − rj | > rFL.
(14)

We start with a lattice spin system that is magnetically
ordered when rFL is small. As rFL increases, the ordering
temperature will be reduced by frustration.

A simpler model that illustrates essentially the same
effect of suppression of ordering by frustration is the
Sherrington-Kirkpatrick model [51,52]. Consider here
ferromagnetic ordering. We start with a mean field type
Hamiltonian H = −J0

∑
(ij) Si · Sj , with J0 > 0, and

each spin interacting with z neighouring spins. The spins
order ferromagnetically below the transition temperature

T
(0)
c = J̃0S(S + 1)/6, with J̃0 = zJ0. This corresponds

to the case far away from the QCP.
Then we add to the above mean field ferromagnetic

model random exchange interactions to model the frus-
tration effect when approaching a QCP. The new Hamil-
tonian can be written as H = −

∑
(ij) JijSi · Sj , where

the interaction Jij is distributed according to P (Jij) =
1√

2πJ2
exp

[
− (Jij−J0)2

2J2

]
[51,52]. This model is readily

solved by the replica technique [52,53], and the transi-
tion temperature to ferromagnetism is reduced by the
random interactions, with the result [52,54]

Tc = T (0)
c

[
1

2
+

1

2

√
1− 3

S(S + 1)

J̃2

J̃2
0

]
, (15)

where we have defined J̃ = z1/2J .

0.2 0.4 0.6 0.8 1.0

z

zc

0.6

0.7

0.8

0.9

1.0

Tc

Tc
H0L

FIG. 3: Ferromagmetic transition temperature as function of
range of random exchange interaction.

We fix the mean field ordering temperature in the ab-

sence of random exchange interaction T
(0)
c and the vari-

ance of the random distribution J , so that z is a measure
of the range of random exchange interaction, i.e. rFL in
Eq.(14). We can define zc = (S(S + 1)/3)J̃2

0/J
2, and

write Tc in the form

Tc = T (0)
c

[
1

2
+

1

2

√
1− z

zc

]
, (16)

which is plotted in Fig. 3. One can see that with in-
creasing range of random exchange interaction, the FM
ordering temperature decreases. This then translates to
the picture that when approaching the QCP, as RKKY
interaction becomes of longer range, magnetic ordering
is suppressed (see Fig. 1).

Conclusions: We have studied RKKY interaction
in NFL metals. The basic picture we find is summa-
rized in Fig. 1. In some NFL phases, when including ver-
tex corrections, the RKKY interaction can be of longer
range than in a FL. Longer range RKKY interaction
leads to frustration for the lattice spin system placed
in such a NFL metal. Magnetic ordering will be sup-
pressed by frustration, and novel behavior may emerge
near the putative QCP. In particular, the continuous
second-order phase transitions may be replaced by first-
order transtions. Glassy dynamics may occur near the
QCP without invoking disorder. One candidate material
for such glassy behavior is the heavy fermion system Ce-
FePO. We focused here on the FM QCP. One can also
generalize the whole procedure to the AFM QCP by in-
creasing kFa. A further question is whether quantum
fluctuations can destroy the spin glass phase and pro-
duce a spin liquid state, as in the infinite-range random-
exchange model [55]. In Co- and Ge-doped YbRh2Si2, a
spin-liquid-type ground state was found in the region of
the phase diagram between the magnetic phase transition
and Fermi-surface reconstruction [56,57]. Another inter-
esting question is the competition between the Kondo
coupling and the longer range RKKY interaction.
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