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We address the influence of realistic disorder and finite doping on the effective magnetic monopole
induced near the surface of an ideal topological insulator (TI) by currents that flow in response to
a suddenly introduced external electric charge. We show that when the longitudinal conductivity
σxx = g(e2/h) 6= 0, the apparent position of a magnetic monopole initially retreats from the TI
surface at speed vM = αcg, where α is the fine structure constant and c is the speed of light. For
the particular case of TI surface states described by a massive Dirac model, we further find that the
temperature T = 0 Hall currents vanish when the external potential is screened.
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Introduction– When a time-reversal-symmetry breaking
perturbation opens a gap in the surface state spectrum
of a three-dimensional topological insulator (TI)[1, 2],
surface Hall currents and orbital magnetism are induced
by electrical perturbations. This magneto-electric cou-
pling effect can be attractively described[3] by adding a
E ·B term to the electromagnetic Lagrangian. The dual-
ity of the resulting axion electrodynamics model[4] leads
to a curious topological magneto-electric effect[5, 11, 12]
in which an electric charge placed above the TI surface
induces Hall currents and associated orbital magnetiza-
tion that appears to emanate from a magnetic monopole
below the surface.

Experimental demonstration of the topological
magneto-electric effect relies on the achievement of a
(half-quantized) quantum anomalous Hall effect on a
TI surface. There has been steady progress in this
direction [6], culminating in the recent experiments on
Cr-doped (Bi,Sb)2Te3 [7]. However, all experimental
work so far has found considerable longitudinal conduc-
tivity, even in Ref. [7]. Longitudinal transport is in fact
an omnipresent experimental reality that is not captured
by the axion electrodynamics model.

In this paper we study the modifications of the surface
magneto-electric response brought about by a finite TI
surface state longitudinal conductivity, σxx = g(e2/h).
The two main issues that have to be addressed in this
context are (i) the dynamics of magneto-electric effect
during the onset of screening on a topological surface, and
(ii) the description of the equilibrium surface currents
which remain after screening has been fully established.
The importance of screening for the description of the im-
age magnetic monopole was first emphasized in Ref. [8].
However, transient phenomena were not considered at
all, and the previous description of magnetic response to
a general potential was incomplete as we explain below.
We find[9] that when the external charge is placed more
than a screening length λ from the surface, the monopole
moves away with velocity vM = 2πσxx = αcg, α being
the fine structure constant. In the long-time limit the

screened external potential becomes static. In this case
we find that the orbital magnetization response depends
on details of the surface state electronic structure, and
that it vanishes identically in the particular case of a
two-dimensional massive Dirac model with temperature
T = 0 and a Fermi level position outside the gap.
Macroscopic Theory– We assume that the TI surface has
a well defined surface Hall conductivity and diffusion con-
stant; this assumption can fail for very well developed
quantum Hall effects. We introduce an external charge
Qe located a distance d from the TI surface; since we
wish to treat this object as a source of macroscopic inho-
mogeneity rather than as a contribution to the disorder
potential we imagine that Q � 1 and that d is longer
than microscopic lengths. Currents flow in the TI sur-
face in response to the electric fields from the external
charge and the screening charges that accumulate in the
TI surface layer. Working in two-dimensional momentum
space and assuming that the total electric field changes
sufficiently slowly with time, we use the continuity equa-
tion to conclude that

∂n2Dq
∂t

= −2πσxxq(Qe
−qd + n2Dq )−DF q

2n2Dq . (1)

where d is the distance from the surface to the external
charge Qe, q is the two-dimensional wave vector, and
n2Dq is the Fourier transform of the induced surface state
density. The longitudinal conductivity, σxx, is related to
the diffusion coefficient via the Einstein relation σxx =
(∂n/∂µ)e2DF .

If we assume that the external charge is introduced
suddenly at time t = 0, then by solving Eq. (1) and
using the Poisson equation we find that the total electric
potential on the surface is

φtot(q, t) = 2πeQe−qd

(
1 + (qλ)−1e−(DF q

2+vMq)t

q + λ−1

)
,

(2)
where λ−1 = 2πσxx/DF is the screening wave vector and
λ the screening length. For t→∞, longitudinal currents
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vanish due to the Einstein-relation and φtot reduces to
the standard result for 2D Thomas-Fermi screening.

This expression for the total electric potential is par-
ticularly illuminating in the limit in which the separation
d between the external charge and the TI surface is much
larger than the screening length λ:

φtot(q, t) =
2πeQ

q
exp(−q(d+ vM t)). (3)

The potential at time t, which controls the instantaneous
Hall currents and hence the instantaneous magnetization,
is identical to that from an external charge that is located
not at vertical position d, but at vertical position d+vM t.
As shown elsewhere[5], because of the magneto-electric
duality of axion electrodynamics, these Hall currents give
rise to a magnetization that is identical to that produced
by a magnetic monopole located at a distance d+vM t be-
low the TI surface. Hence we arrive at the conclusion that
screening is initially equivalent to the apparent monopole
position moving away from the TI surface with velocity
vM . Currents flow until macroscopic electric fields van-
ish. The topological magneto-electric effect is therefore
purely transient when d� λ.

Since the external potential remains large for t → ∞
at length scales smaller than λ, there will be a macro-
scopic orbital magnetic response to the screened poten-
tial if the contributions to the transverse current from
the screened electric field and from the induced density
inhomogeneities do not cancel. Is there an Einstein rela-
tion for Hall currents? Below we use a quantum kinetic
theory to answer this question microscopically. We con-
clude that the answer is no in general. Both drift and
diffusion type terms do appear. The contribution to the
Hall current from density inhomogeneities can be under-
stood as being due to a non-uniform internal magnetic
moment [13] density. For the particular case of a two-
dimensional massive Dirac equation model for TI surface
states, however, we explain below that the drift and dif-
fusion Hall currents do cancel when the carrier density
is non-zero and T → 0, further limiting the experimen-
tal accessibility of the topological magneto electric effect.
Quantitative estimates intended to assess its observabil-
ity are provided in the Supplemental Material.[14]
Do transverse currents flow in equilibrium?– After
screening is fully established, the electrochemical poten-
tial is constant. Transport currents are absent, and cur-
rent flow on the surface, if any, can only exist due to non-
uniform magnetization. In addressing these currents, it is
helpful to first consider the simplified problem illustrated
in Fig. 1 in which the electrostatic potential depends on
only one coordinate and has a jump from φL to φR near
an interior point. Currents can flow only in the narrow re-
gion where the potential has a gradient. Current flows in
the y-direction in the transition region only if the values
of the magnetization in the uniform regions are different.

FIG. 1: (color online) Calculation of the 2D massive Dirac
model equilibrium magnetization in the presence of an elec-
tric potential step, φ(x). The latter is assumed to have val-
ues φL,R at x → ∓∞, respectively. The green dashed line
indicates the position of the electrochemical potential, µec,
constant in the surface. Out-of-plane magnetization values in
the macroscopic regions on both sides of the step are given by
Mz(µec−eφL,R), where Mz(µ) is the z-component of the mag-
netization of a uniform 2D massive Dirac model with chemical
potential µ.

These values can be found by solving the thermodynamic
problem in those regions, which is insensitive to bound-
ary effects. If the common electrochemical potential on
the surface is µec, the problem then reduces to the cal-
culation of magnetization of 2D massive Dirac fermions
at chemical potentials µL,R = µec − eφL,R.

If a non-zero magnetization exists in the absence of an
external magnetic field in a uniform sample of area A
and with chemical potential µ we can find it using the
thermodynamic expression:

Mz = − 1

A

(
∂Ω

∂Bz

)
T,µ

= − 1

A
lim
Bz→0

Ω(Bz)− Ω(−Bz)
2Bz

,

(4)
where Ω is the thermodynamic potential of the system,
which can be calculated knowing the spectrum of Landau
levels on the surface: [15]

εn = sgn(n)

√
2~2v2
`2
|n|+ ∆2, n 6= 0,

ε0 = −sgn(Bz)|∆|, n = 0. (5)

In Eq. (5) v is the Dirac velocity, ∆ is the mass param-
eter, n is the Landau level number, and ` =

√
~c/|e|Bz

is the magnetic length. Since only the position of the
zeroth Landau level depends on the sign of the magnetic
field, only this level contributes to Mz. If the chemical
potential is in either the conduction or valence band, the
temperature is zero, and disorder is neglected, no change
in the thermodynamic potential occurs. It follows that
the magnetization does not depend on the value of the
chemical potential as long as it is outside of the gap, and
therefore that no current flows in the region of varying
electric potential. We now derive this result microscopi-
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cally and discuss conditions under which the cancelation
is incomplete.
Microscopic Theory–When time-reversal symmetry is
broken, the surface states of a 3D strong topological in-

sulators are approximately described[1, 2, 16] by a 2D
massive Dirac Hamiltonian:

HMD =

∫
d2rΨ† (Bpσ + eφext + Udis) Ψ. (6)

Here Bp = (vpx, vpy,∆) is a p-dependent effective Zeeman field which acts on electron spins. The mass term ∆
breaks time-reversal symmetry and arises[7] from proximity exchange coupling to an insulating ferromagnet. Udis

describes an atomic scale disorder potential which we take to be created by short-range impurities with concentration
nimp: Udis =

∑
i uδ(r− ri), with ri denoting the positions of impurities.

We calculate the currents flowing in equilibrium using a quasiclassical kinetic equation for the electron density
matrix f̂ :

∂tf̂p +
1

2

{
∂p(Bp · σ), ∂rf̂p

}
+
i

~
[Bp · σ, f̂p] + eEtot · ∂pf̂ eqp = Îst. (7)

In the above equation [A,B] and {A,B} stand respec-
tively for the commutator and anticommutator of A and
B, Etot is the screened electric field, and Îst is the colli-
sion integral.[17] We allow for the possibility of an imper-
fect quantum Hall effect by considering the case in which
carriers are present in at least one of the bands due either
to doping or to finite temperature.

The distribution function can be decomposed into
scalar and vector pieces, f̂p = np +σ · fp, and fp further
separated into contributions parallel and perpendicular

to Bp, f
‖
pbp and f⊥p . (bp is a unit vector in the direction

of Bp.) In this parameterization (np, f
‖
p) = (f cp ± fvp)/2,

where fvp and f cp are valence and conduction band occu-

pation numbers, while f⊥p describes interband coherence.
The kinetic equation for the full density matrix can be
separated into a set of four equations for these compo-
nents.

The model’s intraband response is entirely stan-
dard [18], except that scattering on the Fermi surface
is influenced by the inner product of the momentum-
dependent conduction band states. For the conduction
band, which we assumed to have a Fermi surface, we find
that

∂fcp
∂t

+ vp∇f cp + eEtotvp
∂nF (Bp − µ)

∂Bp
= −πnimpu

2

~

∫
d2p′

(2π~)2
δ(Bp −Bp′)(1 + bpbp′)(f cp − f cp′), (8)

where vp = v2p/Bp is the band velocity appropriate
for the conduction band of Hamiltonian (6), and nF (ε)
is the Fermi-Dirac distribution function. It follows that
the longitudinal conductivity, σxx is related to the diffu-
sion coefficient via the Einstein relation σxx = νF e

2DF ,
where νF = BpF

/2πv2~2 is the density of states at
the Fermi level. This leads to the usual expression
for the Thomas-Fermi screening length, λTF , define by
λ−1TF = 2πσxx/DF = 2πνF e

2. The absence of a longi-
tudinal current in equilibrium, assumed in the macro-
scopic theory, then follows from the cancelation between
the second (diffusion) and third (drift) terms of the left-
hand-side of Eq. (8), when f c is replaced by its equilib-
rium Fermi function value. Here the diffusion coefficient

DF = v2
pτtr/2 with

τ−1tr =
nimpu

2

4v2~3
v2p2F + 4∆2√
v2p2F + ∆2

. (9)

As suggested above, the naive guess that one just has
to multiply the screened electric field with the intrin-
sic Hall conductivity to find the current definitely fails
in the case of the 2D massive Dirac model. Below we
show that this happens because gradients in the density
of carriers, all of which generally carry intrinsic magnetic
moments[13, 19], also yield an azimuthal current.

Since the response we seek to evaluate includes the
time-reversal-symmetry broken system’s anomalous Hall
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effect, side-jump and skew scattering contributions[20]
are present. By generalizing the treatment of Refs. [21,
22], developed for uniform electric fields, to the case of a
non-uniform static field, one can show that the aforemen-
tioned Fermi-surface contributions to the current vanish
in equilibrium. Therefore, side-jump and skew scattering
contributions need not be considered and the entire Hall
response comes from the intrinsic contribution.[23]

The intrinsic contribution to the current is obtained
from the equation for f⊥p . Importantly we can simply

drop the contribution to the collision integral for f⊥p com-

ing from f
‖
p which contributes to side-jump processes

only. [27] Further, for a sufficiently clean surface, such
that Bpτtr/~� 1, we can also neglect the collisional re-

laxation of f⊥p as compared to the precession term, com-
ing from the commutator on the left hand side of Eq. (7).
The general expression for the static limit of f⊥p is thus ob-

tained simply by isolating the inter-band coherence terms
on the left hand side Eq. (7). We obtain

2Bpf
⊥
p = ~ ((∇np∂p)Bp)× bp + ~ ((eEtot∂p)fp)× bp.

(10)
The second term on the right hand side of Eq. (10) leads
to the standard intrinsic contribution to the Hall con-
ductivity. The first term is the response to the equi-
librium density inhomogeneities. Restricting ourselves
to linear response, and substituting equilibrium values
for the density matrix gives ∇np = −eEtot(dnF (Bp −
µ)/dBp− dnF (−Bp−µ)/dBp)/2 and fp = bp(nF (Bp−
µ)− nF (−Bp − µ))/2. Substituting these expressions in
Eq. (10) and taking the local direction of the electric field
to be along the x̂ axis we obtain:

f⊥p = −~
4
eEtotBp(∂pxbp)×bp

∑
ν=±

ν
∂

∂Bp

(
nF (νBp − µ)

Bp

)
.

(11)

This expression yields the usual intrinsic anomalous Hall conductivity when the derivative acts on the B−1p factor
only. When the derivative acts on both factors we obtain

jy
Ex

=
~e2

2

∫
d2p

(2π~)2
bp · (∂pxbp)× (∂pybp)

∑
ν=±

νB2
p

∂

∂Bp

(
nF (νBp − µ)

Bp

)
. (12)

Note that the equilibrium value of jy/Ex is not the
Hall conductivity. The ratio instead describes equilib-
rium currents that flow along equipotential lines of the
screened external potential and generate a contribution
to the orbital magnetization. The corresponding mag-
netic flux is calculated for a specific measurement proce-
dure in the Supplemental Material.[14]

The right-hand-side of this expression vanishes for the
2D massive Dirac equation model for temperature T → 0.
In that case Eq. (12) reduces to

jy
Ex

=
e2

4π~
(nF (−∆− µ)− nF (∆− µ)), (13)

which obviously vanishes at T → 0 for any µ > |∆|.
Perfect cancelation occurs between the homogenous sys-
tem anomalous Hall response and the current due to the
curl of the internal quasiparticle magnetization density.
The same cancellation occurs for generalized Dirac mod-
els Eq. (6) with |p|-dependent velocities and constant ∆,
as long as the p-integrals are convergent. This precise
cancelation is however dependent on our neglect of colli-
sional relaxation in the equation for f⊥p , which would lead
to ~/∆τtr corrections. The cancelation is also imperfect
at finite temperature; substantial current signal can be
recovered, as illustrated in Fig. 2. The azimuthal current
vanishes not only for T → 0 but also for T → ∞ and is
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FIG. 2: (Color online) The dependence of the ratio of the
azimuthal current, jθ, to the radial electric field, Er, on tem-
perature for different values of the chemical potential.

therefore a non-monotonic function of temperature.

Discussion– We find that the apparent monopole po-
sition moves away from the TI surface with a veloc-
ity vM = αcg. Since graphene based two-dimensional
electron systems, which are similar to TI surface states,
can[28] have g values ∼ 10−7 or smaller when time-
reversal symmetry is broken by an external magnetic
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field, there is a reasonable hope that it will be possi-
ble to obtain TI samples in which vM is small enough to
enable observations in which σxx plays no role and the
axion electrodynamics model is directly applicable. In
the Supplemental Material [14] we describe a procedure
to estimate the required upper limit for g for a specific
experimental procedure based on a SQUID measurement
of the magnetic flux created by an external charge placed
near a topological surface.

After the external charge screening process has been
completed, we find that the azimuthal current response
has two contributions, one proportional to the Hall con-
ductivity and treated previously by Zang and Nagaosa,[8]
and one proportional to an external potential induced
change in the internal orbital magnetization[19] of the
surface states. For the particular case of a massive Dirac
model the two contributions cancel exactly in the clean
T = 0 limit when the carrier density is finite. This obser-
vation constitutes an important experimental prediction:
in the presence of a finite doping, the magnetic flux signal
is expected to be a non-monotonic function of tempera-
ture. This should be contrasted with a naive expectation
that above signal should simply diminish with increasing
temperature. A specific calculation of the magnetic flux
from the surface as a function of temperature, illustrating
its non-monotonicity, is presented in the Supplemental
Material.[14]

We obtain the aforementioned result using a quasiclas-
sical kinetic equation approach, which may not be reli-
able near band edges due to both quantum and non-linear
screening effects, but nevertheless starkly demonstrates
the distinction between azimuthal current and Hall con-
ductivity responses. In general the magnetic flux induced
by an electron charge near a time-reversal symmetry bro-
ken TI surface is dependent on disorder and on the |p|-
dependence of the exchange potential ∆p, and not simply
on surface’s Hall conductivity.
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