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Convective motions in a fluid layer are affected by its orientation with respect to the gravitational
field. We investigate the long-term stability of a thermally-stressed layer of a binary liquid mixture
and show that pattern formation is strongly affected by marginal inclinations as small as a few
milliradians. At small Rayleigh numbers the mass transfer is dominated by the induced large
scale shear flow, while at larger Rayleigh numbers it is dominated by solutal convection. At the
transition, the balance between the solutal and shear flows gives rise to drifting columnar flows
moving in opposite directions along parallel lanes in a Super-Highway configuration.

PACS numbers: 47.20.Bp, 47.54.-r, 92.10.af

Pattern formation in non-equilibrium systems arises
from symmetry breaking of an isotropic initial state [1].
Whenever two symmetry-breaking mechanisms coexist
their competition gives rise to a rich phase diagram. A
typical example is represented by an inclined layer of liq-
uid under the action of a temperature difference. Tilting
the layer can determine a large scale shear flow (LSF).
For fairly large inclinations theoretical [2–4] and experi-
mental studies [5–9] reveal rich spatio-temporal dynam-
ics in the phase diagram, characterized by the presence
of Busse oscillations, subharmonic oscillations as well as
longitudinal and cross rolls. The transitions between dif-
ferent regimes occur at angles of the order of tens of
degrees, and pattern formation does not appear to be
influenced by small inclination angles of the order of a
few degrees or smaller. By adding a second component
to the mixture, the compositional stratification also con-
tributes to the convective behavior. A remarkable exam-
ple is represented by thermohaline circulation in oceans,
where both the local salinity and temperature of water
contribute to the convective motions, the thickness of the
layer of water being modulated by the seafloor [10, 11].
The thermal stress applied to a liquid mixture via a tem-
perature gradient can be quantified by the dimensionless
Rayleigh number Ra = g∆ρTh

3/(ηDT ) [12], where g is
the gravity acceleration, ∆ρT the density difference gen-
erated by thermal dilation of the liquid, h the liquid layer
thickness, η its shear viscosity and DT the thermal dif-
fusivity. The presence of the thermal stress determines
a separating flux of the two components and, in turn,
a solutal density difference ∆ρc throughout the sample,
whose value and orientation are quantified by the Soret
coefficient ST [13, 14]. In the case of a mixture with pos-
itive ST , as the one used in our study, both ∆ρT and
∆ρc contribute to destabilize a sample heated from be-
low. The relative importance of the two contributions is
expressed by the separation ratio ψ = ∆ρc/∆ρT . The

concentration difference ∆ρc determines a solutal stress
on the mixture expressed by the solutal Rayleigh number
Ras = RaΨ/Le), where Le = D/DT is the Lewis number
of the mixture and D its diffusion coefficient [15, 16]. At
Rayleigh numbers smaller than the threshold Rac ' 1700
for Rayleigh-Bénard convection the long persistence time
of concentration perturbations can give rise to sustained
solutal convective motions even in the presence of small
∆ρc.

In this letter we investigate the influence of a small
inclination angle in the range 0 mrad< α < 36 mrad
(α < 2◦) on the long-term convective behaviour of a layer
of a binary liquid mixture under thermal stress below
the threshold for Rayleigh-Bénard convection. Interest-
ingly, we find the long-term stability of the mixture to be
strongly influenced already by small inclination angles, in
contrast to the short-term behaviour which remains un-
affected. The observed convective patterns are arranged
into a peculiar Super-Highway configuration, reminiscent
of the traffic of vehicles during rush hours. Such pattern
differs dramatically from the square, roll, and cross-roll
patterns previously reported experimentally [17, 18] and
theoretically [19, 20] for binary liquid mixtures heated
from below in the absence of inclination.

The binary mixture selected for this study is
isobutylbenzene/n-dodecane at 50% weight fraction. The
choice of this mixture is motivated by the availability of
an accurate and extensive set of thermophysical proper-
ties [21]. The sample is delimited by two 8 × 40 × 40
mm3 square sapphire windows kept at fixed distance and
sealed by a circular Viton O-ring gasket with an inner
radius R = 13 mm. The geometry corresponds to a
moderately high aspect ratio R/h = 10 of the sample.
The sapphire windows are in contact with two annu-
lar thermo electric devices connected to two indepen-
dent proportional-integral-derivative (PID) temperature
controllers. The temperature of each sapphire window
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can be controlled independently with an absolute accu-
racy of 0.01 K and a relative RMS stability of 0.001
K over 24 hours. The Peltier elements have a central
hole with radius of r = 6.5 mm that determines a clear
aperture suitable to perform optical measurements. The
performances and reliability of the cell have been es-
tablished during a long series of experiments on devices
sharing a similar conceptual design (see [23–25] and ref-
erences therein). Calibration measurements performed
with water in strictly non-inclined conditions showed
Rac = 1670 ± 50. Finite element modeling has been
performed to evaluate the cell radial inhomogeneities of
the temperature profile. We find the inhomoegeneities to
be smaller than 2% of the vertical gradient, comparable
to the results previously reported [23]. The uniformity of
the cell thickness is better than 0.01mm over the entire
field of view.

A h = 1.30 mm thick layer of the mixture is hosted in-
side the thermal gradient cell that can be tilted by using
a calibrated screw. We performed careful control mea-
surements at zero tilt angle, lasting as long as one month.
These measurements allowed us to exclude the presence
of a large scale flow when the cell is kept horizontal (see
supplemental text). As a result of these measurements we
conservatively estimate that the accuracy of the tilt angle
is better than 2 mrad. The diagnostic method of choice is
shadowgraph, a visualization technique widely employed
in fluid dynamics [26–28]. Its implementation comprises
a super-luminous diode (Superlum, Broad Lighter S680)
with a wavelength of λ = (683 ± 9) nm, coupled to a
single mode optical fiber as a light source. The diverging
beam out of the fiber is collimated by using an achro-
matic doublet lens of focal length f = 150 mm posi-
tioned at a focal distance from the lens. No other lens
is used after the sample cell. A Charged Coupled De-
vice sensor (Vosskühler, CCD4000) with a resolution of
2048×2048 pixels of 7.4×7.4 µm2 is placed at a distance
of z = (260± 10) mm from the sample cell [25].

A typical measurement sequence involves the rapid im-
position of a temperature difference by heating from be-
low. As a result, a nearly linear temperature profile is es-
tablished across the sample in a time τT = h2/DT

∼= 20
s. During the process, we grab continuously shadow-
graph images of the convective patterns. The frame rate
is set to 1Hz during the initial fast kinetics and reduced
to 1/60Hz for the subsequent slower phase. A sampling
from a typical image sequence corresponding to an incli-
nation of 24 mrad and to a Rayleigh number Ra = 1320
(∆T = 8.5 K) is shown in Fig. 1 (see also Supplemental
Movie S1). A reference background image is taken be-
fore applying the temperature gradient to the fluid mix-
ture (Fig. 1a). This image is then subtracted to all
the images subsequently collected at generic time t. The
imposition of the temperature difference is followed by
a latency time where no pattern formation occurs (Fig.
1b). This featureless phase ends with the appearance of

FIG. 1. (color online) Shadowgraph images of the convec-
tive patterns: Ra = 1320, α = 24mrad a, Reference image
taken at t = 0s. b-f, Difference images; dark zones denote
the warmer fluid, which is less concentrated in the denser
isobutylbenzene component. Different times shown are: b
150s, c 400s, d 4000s, e 20500s, and f 29000s. The direction
of the marginal gravitational acceleration parallel to the cell
plane is indicated by an arrow in b. The directions of motion
of the lines for the Super-Highway convection are indicated
by red and blue arrows in e. The size bar in f corresponds to
the sample thickness h = 1.3mm.

convective rolls (Fig. 1c). After a few thousands seconds
the rolls rearrange towards a more ordered quasi-squared
pattern (Fig.1d), a configuration typical of solutal con-
vection in binary mixtures with positive Soret coefficient
heated from below [17–19].

Quite surprisingly, after a time of the order of 104s the
square patterns start to drift and evolve gradually into
sequences of columns of liquid moving in opposite direc-
tions along parallel lanes arranged in a Super-Highway
configuration (SH) (Fig. 1e). Eventually, the SH pat-
terns might fade away and the convective pattern can
become almost featureless (Fig. 1f). At Rayleigh num-
bers of the order of RaSH ≈ 1400 (∆T = 9 K) the SH
patterns become stable (Supplemental Movie S2). At
larger Rayleigh numbers, the patterns display marked os-
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cillations between a drifting square (DS) pattern (Supple-
mental Movie S3) and an SH one. The long time behavior
of the patterns is strongly affected by the marginal incli-
nation angle and by the Rayleigh number (Fig. 2). The
phase diagram displays a stable Large Scale Flow (LSF)
region at small Rayleigh numbers, where convective pat-
terns are destroyed by the long-term effect of the incli-
nation. At higher Rayleigh numbers the columnar con-
vection is more efficient than the LSF. Under these con-
ditions stable drifting square patterns are present. The
intermediate region is characterized by patterns where
the competition between LSF and solutal convection be-
comes apparent and the system displays marked oscilla-
tions between drifting square patterns and longitudinal
rolls or SH patterns. In a narrow region of the phase
space (red stars in Fig.2) the balance between LSF and
solutal convection gives rise to a stable SH convection
state in which the columns organize into parallel lanes
drifting in opposite directions (Fig.1e and Supplemental
Movie S4). The white spots, which represent descending
columns of colder liquid crossing the cell perpendicularly
to the plane of the figure, align into parallel lines and
move in the direction of the residual gravitational force
gr parallel to cell surface, while the dark spots align into
another set of lines and move in the opposite direction.
The two sets of lines are staggered across the cell plane.

The different size of the two sets of spots is related to
the shadowgraph visualization because areas with a re-
fractive index slightly larger/smaller than the surround-
ings act like converging/diverging lenses [27, 28]. The de-
velopment of lanes in the presence of two flows occurring
in opposite directions is a rather general self-organization
process that occurs also in other systems, such as groups
of animals [29]. In particular, simulations of the dynam-
ics of groups of pedestrian crossing a walkway in opposite
directions show the development of lanes of flow similar
to those reported by us, but obtained in the presence
of more generic local interations than the hydrodynamic
ones governing our system [30].

In order to perform a systematic investigation of the
evolution of the convective patterns we determined from
each image sequence the time evolution of the contrast
C(t) of the images. The image contrast is defined as
C(t) =< [i(t) − i(to)]2 >~x where < ... >~x represents
the average over the pixels of an image, i(t) = I(t)/ <
I(t) >~x is an image normalized by its spatial average,
and i(to) is a normalized background image at time to
before applying the temperature gradient. The contrast
provides a quantitative estimate of the strength of the
temperature and concentration modulations generated
by the convective motions. Under all the explored ex-
perimental conditions, after the imposition of the tem-
perature difference the contrast remains constant for a
latency time t∗ lasting from tens to hundreds of seconds
(Fig. 3, left arrows). The latency period is then followed
by a rapid growth of the contrast, and by relaxation os-

FIG. 2. (color online) Phase diagram of long-term convec-
tive behavior: phase diagram of the convective pattern as a
function of the Rayleigh number (or solutal Rayleigh num-
ber,top axis) and the inclination angle. Symbols represent
the different long-term convective states: (O) for Large Scale
Flow (LSF);(?) for Super-Highway (SH) convection; (◦) for
oscillations; (�) for drifting square patterns (DS); and (�)
for stable still square patterns. The two curved lines mark
the approximate boundaries of the transition region, the ver-
tical one indicates the value of the critical Rayleigh number
at zero inclination. The rectangle outlines the experimental
conditions shown in Fig. 3.

cillations leading to a value that remains fairly stable for
a second latency time tLSF related to the inclination of
the cell (Fig. 3, right arrows).

Interestingly, up to the time tLSF the evolution of
the contrast under different experimental conditions is

FIG. 3. (color online) Image contrast: contrast of shadow-
graph image sequences C(t) plotted as a function of time (or
dimensionless time relative to the diffusive time scale, top
axis). The layer of liquid is tilted at an angle of 24mrad.
The curves correspond to different imposed temperature dif-
ferences. Continuous lines stand for Rayleigh numbers: (from
top to bottom) Ra=1550, 1480, 1400, 1320. The left verti-
cal arrows indicate t∗ while the right ones indicate τLSF , as
detailed in the text.
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qualitatively similar. After that time patterns becomes
strongly affected by the Large Scale Flow that determines
a dramatic differentiation of the contrast. For an incli-
nation of 24mrad, at Ra = 1320 the drop of the contrast
marks the appearance of almost featureless patterns as-
sociated to the LSF (black line in Fig. 3). The fact that
the contrast does not drop back to its original value is
the signature of the presence of barely detectable fluctu-
ations induced by the shear motion. At Ra = 1400 the
balance between LSF and solutal convection gives rise to
a SH convective regime (red line in Fig. 3) with a stable
contrast, accompanied by small number fluctuations de-
termined by the entrance and exit of the columnar struc-
tures into the field of view. At Ra = 1480 the compe-
tition between LSF and solutal convection gives rise to
the transition between different patterns and the contrast
exhibits pronounced oscillations (blue line in Fig. 3). Fi-
nally, at Ra = 1550 solutal convection gives rise to square
patterns, but the influence of the LSF still determines a
drifting of the patterns that gives rise to small number
fluctuations (magenta line in Fig. 3).

The presence of relaxation oscillations is a signature
that the onset of convection is determined by the desta-
bilization of concentration boundary layers (BLs). Ba-
sically, the BLs grow uniformly by diffusion until they
reach a critical thickness δ∗ beyond which convection sets
in. An estimate of the critical thickness of the boundary
layers can be obtained from the critical dimensionless
latency time τ∗ = t∗D/h2 [31–34], where t∗ is experi-
mentally determined as the time at which the derivative
of the image contrast increases by a fixed amount (left
arrows in Fig.3). Figure 4a-b shows the dimensionless
latency time τ∗ and critical BL thickness δ∗, relative to
h, plotted as a function of Ra. Interestingly, the data in
Fig. 4a-b fall onto the same curve independently of the
inclination angle. This confirms that the initial stages
of pattern formation are not significantly influenced by a
marginal inclination of the sample.

After a time tLSF of the order of 104s (Fig. 3) the
patterns start to drift, thus marking the start of the in-
fluence of the large scale shear flow induced by the incli-
nation of the cell. Equivalently the image contrast shows
a drop (right arrows in Fig.3), which is used to quanti-
tatively identify tLSF . The dimensionless time τLSF =
tLSFD/h

2, which expresses tLSF relative to the diffusion
time across the cell height, is strongly affected by the in-
clination angle, as it is apparent from the lack of overlap
of the curves corresponding to different inclination an-
gles (Fig. 4c). For large Rayleigh numbers close to the
threshold Rac the time τLSF shows signs of a divergence.
At such large Ra a slowing down of the shear flow oc-
curs, indicating the dominance of the solutal columnar
convective mass transfer over the shear flow.

In the present work we limited our analysis to one liq-
uid mixture with a positive Soret coefficient; it remains
an open question whether a similar mechanism can be

FIG. 4. (color online) Convection timescales and boundary
layer thickness: a, Dimensionless critical time τ∗ for the onset
of convection. b, Critical thickness δ∗ of the dimensionless
concentration boundary layer. c, Dimensionless time τ for
the manifestation of the large-scale shear flow (LSF) related
to the inclination, τLSF . Different symbols stand for different
inclination angles: (�) are for 6 mrad, (4) for 18 mrad, (◦)
for 24 mrad and (O) for 36 mrad.

generally observed in other systems where a temperature
and composition stratification coexist. One interesting
case is the thermohaline circulation in oceans [10, 11].
Here the cooling determined by wind at the surface of
the ocean determines a decrease of the temperature and
an increase of the salinity through evaporation, in the
presence of a variable landscape at the bottom of the
ocean. The combined effect of these factors is one of the
components leading to the large-scale thermohaline cir-
culation, a phenomenon that is still not understood well,
due to the simultaneous presence of other effects that
contribute to the oceanic currents. Our experimental
model system may allow to isolate and study indepen-
dently one of the fundamental mechanisms driving the
thermohaline circulation process. In turn this will facil-
itate progress towards a fundamental understanding of
the interplay between large scale flow and local colum-
nar flows.
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