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Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France,

4 Department of Polymer Science and Engineering,
University of Massachusetts, Amherst MA 01003,

5Oxford Centre for Collaborative Applied Mathematics,
Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, United Kingdom

(Dated: June 11, 2013)

We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable
foundation. Considering the membrane limit of sheets that can relax compression through wrinkling
at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids.
Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from
the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio
between the surface tension γ and E is of molecular size. This finding indicates a new elasto-
capillary phenomenon that stems from the high bendability of very thin elastic sheets rather than
from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is
fully predictable, thus resolving a puzzle in modelling “drop-on-a-floating-sheet” experiments, and
enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films.

The partial wetting of liquids on solids is among the
most basic of capillary phenomena [1]. The fundamental
Young’s law relates the equilibrium contact angle ϑY of
a liquid drop on a solid to the surface energies via

cosϑY = (γsv − γs`)/γ , (1)

where γsv, γs` and γ = γ`v are the mutual surface ener-
gies between the solid, vapor, and liquid. This classical
equation reflects a balance of forces on the contact line
only in the plane of the solid surface and assumes that
the normal component of the contact force (≈ γ sinϑY )
induces only slight, localized deformations of the solid.
However, the normal force balance must be considered
when the length `m ≡ γ/E (with E the Young mod-
ulus of the solid) is larger than molecular scales [3–5].
Here, minimization of the total energy, involving inter-
facial and elastic components, requires deviation of the
contact angle from ϑY .

A totally different notion of elasto-capillarity is real-
ized when a liquid drop is brought into contact with a
stiff thin sheet of thickness t that rests on a soft, easily
deformable substrate (e.g. a polystyrene sheet on wa-
ter, as in Fig. 1, for which `m ≈ 0.2 Å) [2]. Here, the
deformability of the foundation enables the sheet to re-
spond to the exerted capillary force as a thin elastic body
- by bending [6] and developing in-plane stresses [7]. Fur-
thermore, in ultrathin sheets where t ∼ 10 nm, in-plane
compression relaxes completely through wrinkles whose
number diverges as t decreases [8–12]. The “drop-on-a-
floating-sheet” experiment (Fig. 1), which provided a sys-
tematic study of this high bendability regime, revealed a
wrinkle pattern whose size was comparable to the drop’s
radius R (0.5− 1.5 mm) [7], indicating that the capillary

force may affect in-plane stresses and shape deformation
on a very large lateral length ∼ R � t � `m. An im-
portant application of this system is the measurement
of thickness, surface energy and elastic modulii of ultra-
thin sheets from macro-scale features, namely, the extent
and number of wrinkles. However, previous studies have
failed to provide a quantitative, predictive link [7, 13].

In this Letter we identify the dimensionless groups that
govern elasto-capillary phenomena and focus on highly-
bendable sheets on a highly deformable foundation. This
regime is characterized by:

`m � t� `1/3m R2/3 . (2)

Using the compression-free limit, known as the “relaxed
energy” [10] or “tension field theory” [11], we show:
(i) The contact angle between the liquid-vapor and
liquid-solid interfaces (ϑ + φ in Fig. 1c) deviates from
ϑY by an amount ∆ϑ

∆ϑ ∼ (`m/t)
1/3 , (3)

which vanishes slowly as `m/t → 0. This prediction dif-
fers from that for soft solid films on hard substrates [2–4],
where ∆ϑ is inversely proportional to the drop’s radius.
(ii) We calculate the stress profile in the sheet, from
which we extract the extent of the wrinkled region and
compare it with the experimental observations of [7] with
no fitting of parameters. Additionally, we present data
from a variant of the original experiment [7] that em-
ploys surfactants to manipulate the stress in the sheet.
The agreement with our calculations substantiates the
validity of our theoretical approach and its usefulness for
metrology of thin solid films.
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FIG. 1. (a-b) Views of the wrinkle pattern formed by placing
a water drop on a floating ultrathin PS sheet (t = 72 nm).
The radius of the contact line is Ri. Radial wrinkles appear in:
(a) an annular zone Ri < r < LO, and (b) a narrow annulus
LI < r < Ri beneath the drop. Fig. 1B is obtained from
confocal slices of a fluorescent sheet [14]. (c) A schematic cross
section depicts the forces acting at the contact line (wrinkles
are azimuthal undulations around this radial profile).

Our system is shown in Fig. 1: A circular polysterene
spin-coated sheet of radius Ro, thickness t, and Young
modulus E floats on a liquid bath (whose density is ρ)
and is pulled taut by the bath-vapor surface tension γ′.
A small volume V of liquid of surface tension γ = γlv
is placed at the center of the sheet. The stretching and
bending modulii of the sheet are, respectively, Y = Et
and B = Et3/12(1 − ν2), where ν is the Poisson ra-
tio. The thickness t is varied from approximately 30 nm
to 300 nm. The radius Ro = 23 mm, and the Young
modulus is E = 3.4 GPa. The distinct values of liquid
surface tensions (γ′ 6= γ) are obtained by adding surfac-
tants to the liquid bath [14]. We define R(V, ϑY ) to be
the radius of the contact line on an undeformed sheet:
R = (3V/2π)1/3 sinϑY (1−3/2 cosϑY +1/2 cos3 ϑY )−1/3.
As Fig. 1c shows, the pressure in the drop forces the
film to bulge, and hence the radius of the contact line,
denoted here by Ri, deviates from R.

The physical parameters can be arranged into six di-
mensionless groups. The first two are ϑY and γ/γ′, which
are determined by the surface energies. A second pair is

K̃ = KR2/γ′ ; R̃ = R/Ro , (4)

where K = ρg. The parameter K̃−1 quantifies the de-
formability of the liquid foundation, and R̃ is the ratio be-
tween the sizes of the drop and the sheet. In this study we
assume K̃, R̃ → 0, corresponding to a sufficiently small
drop; the effect of K̃, R̃ 6= 0 on the stress is perturbative
[15, 16]. The final pair of parameters, essential for our
study, involves the elastic modulii of the sheet:

γ̃ ≡ γ/Y = `m/t ; ε−1 ≡ γR2/B ∼ R2`m/t
3 . (5)

Our theory and experiments are in the regime γ̃, ε � 1
(see Eq. 2). The parameter ε−1 is the bendability [15],

and can be expressed as the ratio between the lengths
R and

√
B/γ (often called the “elasto-capillary length”

[6]). In the high bendability regime the sheet supports
very small level of compression before and after buck-
ling. As a consequence, the elastic stresses in the sheet
σrr(r), σθθ(r) are determined by γ̃ (and γ/γ′, ϑY ), and
exhibit weak, sub-dominant dependence on the bending
modulus (hence on ε) [15]. This feature distinguishes our
system from [6], where bending forces are dominant and
balance surface tension.

As Fig. 1 suggests, the two parts of the sheet separated
by the contact line must be connected through boundary
conditions that reflect continuity of the radial displace-
ment field ur(r) and force balance (in r̂) [19]:

u(I)r = u(O)
r , (6)

σ(I)
rr cosφ+ γ cosϑ = σ(O)

rr , (7)

where σ
(I)
rr , u

(I)
r , and σ

(O)
rr , u

(O)
r , are, respectively, the ra-

dial streses and displacements in the sheet at the inner
(I) and outer (O) sides of the contact line, evaluated at
r = Ri. The variables in Eqs. (6,7) are not independent.
In the high bendability regime, the Föppl–von Kármán
(FvK) equations that determine the displacement and
stress in the sheet depend in each region on a single con-
finement parameter:

(O) : τ ≡ σ(O)
rr /γ′ ; (I) : α ≡ Y γ2 sin2 ϑ/2(σ(I)

rr )3 . (8)

The physical meaning of α and τ will be explained below.
Using the known solutions to the FvK equations [15, 18],

the displacements u
(I)
r , u

(O)
r as well as the angle φ and the

radius Ri could be eliminated from Eqs. (6,7), and the
problem reduces to two equations for the three unknowns

σ
(I)
rr , σ

(O)
rr , and ϑ. Following the proposal of [2], we find

the missing relation by minimizing the total energy UT ,
that consists of the elastic energy of the deformed sheet
and the surface energies of the sheet, drop, and bath.
The results of this calculation, whose details appear in
[17], are presented in Fig. 2 for ϑY = π/2, a few distinct
values of γ/γ′, and a range of γ̃ � 1.

The confinement parameters, α and τ express the de-
gree of variation of the radial tension across each part
of the film, which gives rise to compressive azimuthal
(hoop) strain [15, 18]. The size of the wrinkled zone thus
increases with α and τ . In the outer part, τ is the ratio

between the radial tension at the contact line σ
(O)
rr and

the bath tension γ′. In the inner part, α describes the ra-
tio between the radial tensions near the center of the film,

and at the contact line. The last one is σ
(I)
rr whereas the

former is governed by the “geometric” stress Y (R/R̄)2,
where R̄ is the average radius of curvature of the bulged

sheet. We estimate R̄ from the relation: PR∼σ(I)
rr , that

links the tension in the sheet and the Laplace pressure in
the drop P ≈γ/R sinϑ.
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FIG. 2. (a-b) Computed values of α, τ for 10−5 < γ̃ < 10−1.
Here ϑY = π/2 and γ′/γ is: 2 (red), 1 (purple), 0.5 (blue). For
γ̃ � 1 the various plots collapse upon rescaling τ → τγ′/γ.
For sufficiently large γ̃, both α and τ are below their respec-
tive threshold values, hence the state is unwrinkled and de-
scribed by the axisymmetric solution. As γ̃ decreases, α(γ̃)
and τ(γ̃) exceed their critical values (dashed lines: αc ≈
5.16; τc = 2) and our calculations describe the wrinkled state
of the highly-bendable sheet (ε→ 0) using the FT theory. (c)
A log-log plot of the angle φ (see Fig. 1). Dashed line (guide to
the eye) has a slope 1/3. Data points: Solid circles are taken
from confocal fluorescence microscopy measurements of the
sheet’s profile under the drop. Both bath and drop are water.
The open circles are from a different, but comparable configu-
ration (where bath is glycerol [14]). Error bars are comparable
to the symbol size. (d) The ratio (ϑY −ϑ)/φ→ 1/2 as γ̃ → 0.
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FIG. 3. (a) The stresses σrr (blue), σθθ (red) beneath the
drop ((I), left) and outside the contact line ((O), right) for
representative post-threshold values of the confinements: α =
100, τ = 5. Solid curves are the compression-free (FT) limit
[15, 18]. Dashed curves are the axisymmetric (NT) limit.

An important outcome of Refs. [15, 18] is that in both
inner and outer parts of the sheet the FvK equations
yield two distinct solutions for the stress field, whose
characteristic profiles are shown in Fig. 3. One solu-
tion, σaxirr (r) and σaxiθθ (r), corresponds to the axisymmet-
ric state. Below a critical confinement (αc ≈ 5.16 [18],
τc = 2 [20]), both radial and hoop stresses are purely ten-
sile. However, beyond these critical values, the axisym-

metric state develops hoop compression (σ
(axi)
θθ (r) < 0)

in annuli LI(α) < r < Ri and Ri < r < LO(τ), re-
spectively, signaling the wrinkling instability. In the
high bendability regime, ε � 1, where only a tiny level
of compression can be accommodated, the unstable ax-
isymmetric stress (which is the basis for standard “near
threshold” (NT) and post-buckling theories) must be re-
placed by a compression-free stress field that satisfies:
σθθ ≥ 0 as ε → 0 (see Fig. 3) [9, 10]. For a given
α > αc (τ > τc), the compression-free stress is the basis
for a far from threshold (FT) theory of the wrinkled state
[15]. The dependence of the radii LI , LO on the confine-
ment demonstrates the difference between the NT and
FT predictions. For the outer radius [15, 20]:

NT: LO = Ri
√
τ − 1 ; FT: LO = Riτ/2 , (9)

while for LI the NT result is known only numerically and
the FT behavior is: LI = Ri(αc/α)1/5 [18]. These esti-
mates do not account for boundary layers between the
wrinkled and unwrinkled zones. The associated correc-
tion to the wrinkle length vanishes slowly with ε [21].

Let us consider now the parameter regime γ̃ � 1.
Since the modulus Y is much larger than the surface ten-
sion γ, we expect the sheet to approach its undeformed
state with ϑ → ϑY and φ → 0. Furthermore, we expect
(and confirm below) that the stresses at the contact line
increases with Y , and hence can be approximated by the

force balance at the contact line, Eq. (7): σ
(I)
rr ≈ σ

(O)
rr .

The continuity of displacement, Eq. (6), then yields after
some algebra [17] the asymptotic relation: α ∼ log(τ). It

is important to realize that the displacements u
(I)
r , u

(O)
r

at r = Ri are determined by the stress in the whole sheet.
Hence the slow variation of α compared to τ reflects the
global distribution of stress in the sheet, which favors
hoop confinement (hence a larger wrinkled zone) outside
the contact line rather than beneath the drop. Our ex-
periments exhibit this qualitative trend. Furthermore,
the finding α ∼ log(τ) suggests that the scaling behavior
of the various observables can be obtained (up to log-
arithmic corrections) by assuming α reaches a constant
value as γ̃ → 0. Eq. (8) then immediately implies:

σ(O)
rr ≈ σ(I)

rr ∼ γ2/3Y 1/3 . (10)

This scaling result implies that the stresses at the contact
line are not affected by the “far-field” tension γ′ of the
bath, but only by the nontrivial elasto-capillary mechan-
ics of the sheet beneath the drop. A direct consequence
of this remarkable feature, is that for any fixed value of
γ̃, the confinement τ ∼ 1/γ′ (see Eq. (8) and Fig. 2a).
As Eq. (9) shows, the FT theory then predicts [22]:

LO ∼ γ2/3Y 1/3/γ′ ∼ t1/3 (11)

(see Figs. 4a,4b). This scaling law differs from the em-
pirical one proposed in the original experiment (Eq. 3
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FIG. 4. (a-b) Comparison between observed and predicted
wrinkle radius LO (normalized by Ri). Predictions shown
for the FT (solid) and NT (dashed) theories. In (a), γ =
γ′ = 72 dyn

cm
and γ̃ varies (data obtained by varying t from

31 to 233 nm [7]). The dotted line has a slope −1/3. In
(b), t = 50 nm (red), t = 152 nm (blue), and γ′/γ is varied
using a concentration of surfactant (pefluorododecanoic acid)
in the aqueous bath. Vertical error bars result from taking
the standard deviation of several wrinkle. The measurement
of the wrinkle length is described in [17]. (c) The measured
profile beneath the drop, obtained by confocal microscopy [14]
and the predicted profile (blue).

of [7]). Another consequence of Eq. (10), which fol-
lows from the vertical force balance at the contact line
(γ sinϑ ≈ σ(I)

rr sinφ), is the scaling of the angle φ ∼ γ̃1/3
(Fig. 2c). Assuming the angle difference ϑY − ϑ is com-
parable (but not equal to) φ, one finds the scaling of the
deviation ∆ϑ from ϑY , Eq. (3). Our calculation, which
minimizes the total energy UT , shows that ϑY −ϑ→ φ/2
as γ̃ → 0 (Fig. 2d). We are unaware of any intuitive
argument for this angular “equi-partitioning”.

In Fig. 2, we have already demonstrated the agree-
ment with experiments of our theoretical treatment for
deviation from the Young angle. In the thickness range
probed by our measurements, the bendability is high,
ε−1 > 104, and 7 · 10−5 < γ̃ < 10−3, a parameter regime
in which the FT limit is expected to apply. In Fig. 4,
we compare the measured extent of the wrinkled zone
outside the drop with predictions from the FT wrinkling
theory. The procedure by which the wrinkle length is de-
termined from experimental images is described in [17].
We demonstrate good agreement between data and pre-
diction, both in Fig. 4a, where we hold γ/γ′ fixed and
vary γ̃, and in Fig. 4b, where we vary γ′ for a fixed γ̃.
In Fig. 4c we compare the predicted profile of the sheet
under the drop to the experimentally determined profile.
The overall form is similar, but the amplitude is over-
predicted. The numerical difference in amplitude reflects

the difference between prediction and measurement in
Fig. 2c. However, as shown in that figure, the scaling
of the amplitude with γ̃ is correctly recovered. The nu-
merical difference in the amplitude also appears not to
affect the successful prediction of the external wrinkle
length LO, thus enabling the use of this geometry as a
quantitative probe of the mechanics of sheets.

Our work explains the wrinkle length in Fig. 1a
(Eq. 11), a puzzle first posed in Refs. [7, 13]. We also
predicted a change in the contact angle (Eq. 3). Be-
yond the regime addressed here, the four dimensionless
parameters, Eqs. 4,5, constitute a framework for classi-
fying elasto-capillary phenomena. Their importance can
be appreciated by considering previous studies [2, 4, 6].
To do so, we generalize the stiffness K (Eq. 4) to account
for elastic substrates of modulus Es, setting K ≈ Es/R
(with R a characteristic deformation scale); this gives
a deformability K̃−1 ≈ γ/REs. Refs. [4, 5] addressed
soft films on undeformable substrates (K̃ � 1), and
found that the film deforms as a 3D body in a region
of size t near the contact line. Our study pertains to a
stiff thin film (γ̃ � 1) on a highly deformable founda-
tion (K̃ � 1) and exhibits different behavior: the sheet
responds to capillary forces as a thin body by bending
and stretching [2]. While this limit is reminiscent of [6],
there ε . O(1) (rather than ε � 1 here) and thus bend-
ing forces can balance compression; additionally, Ref. [6]
studied the limit R̃ = R/Ro = O(1) while we have the
case R̃ � K̃1/2 � 1, so that a developable stress-free
shape is impossible. The wildly different behaviour ex-
hibited in each of these three examples shows the impor-
tance of the four parameters in Eqs. (4,5) and demon-
strates the rich variety of phenomena in this parameter
space that remain to be explored.
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