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1Departamento de F́ısica Atómica, Molecular y Nuclear and GISC,

Universidad Complutense de Madrid, 28040 Madrid, Spain
2The Hakubi Center for Advanced Research, Kyoto University,

Yoshida-ushinomiya cho, Sakyo-ku, Kyoto 606-8302, Japan
3Yukawa Institute for Theoretical Physics, Kyoto University,

Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan

(Dated: June 12, 2013)

To induce transport, detailed balance must be broken. A common mechanism is to bias the
dynamics with a thermodynamic fuel, such as chemical energy. An intriguing, alternative strategy
is for a Maxwell demon to effect the bias using feedback. We demonstrate that these two different
mechanisms lead to distinct thermodynamics by contrasting a chemical motor and information
motor with identical dynamics. To clarify this difference, we study both models within one unified
framework, highlighting the role of the interaction between the demon and the motor. This analysis
elucidates the manner in which information is incorporated into a physical system.
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Information is physical [1]: it is stored in physical
memories, and therefore the processing of information
is constrained by the same thermodynamic limitations
as any other physical process [2, 3]. Remarkably, once
information has been obtained, it can then serve as a
thermodynamic resource similar to free energy. These
observations have been the historic points of departure
for investigations into the nature of information [2, 3]. As
a consequence, research has either focused on the manip-
ulation of information in isolated memories, or simply on
the engines that utilize that information. This division
has been fruitful. Theoretical studies of memories, which
have been verified by experiment [4], have led to insights
into the thermodynamic costs of measurement [5] and
erasure [6–11]; copying [12, 13]; and proofreading [12];
while theoretical [14–20] and experimental [21, 22] inves-
tigations of information (or feedback) motors have ex-
plored the fundamental limits to the conversion of infor-
mation into work.

Nevertheless, the thermodynamic qualities of informa-
tion still need to be clarified, especially the mechanisms
that allow a motor to exploit information to rectify ther-
mal fluctuations. With this goal in mind, we highlight
in this Letter the difference between information and a
more traditional thermodynamic resource, the chemical
free energy. We elaborate this distinction by comparing
the entropy production rates of two motors with identical

dynamics: a chemical motor powered by a chemical po-
tential gradient and an information motor driven by feed-
back. For the chemical motor, we use traditional meth-
ods of thermodynamic analysis [23]. However, such meth-
ods cannot be applied to the information motor when the
memory is left unspecified. Even still, a useful bound for
its entropy production can be obtained from a refinement
of the second law of thermodynamics for feedback and
information, introduced by Sagawa and Ueda [11]. We

demonstrate that, despite the identical dynamics, the in-
formation motor presents qualitatively different thermo-
dynamics. We then trace this discrepancy to the features
of the interaction between the ratchet and the memory by
introducing a physical model of the information motor.

Our motors are patterned on the Brownian ratchet [24]
pictured in Fig. 1. The ratchet is composed of a particle
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FIG. 1. Depiction of the Brownian ratchet template. A par-
ticle moves in a periodic potential of period l against a force
F = 2∆E/l. The potential switches randomly between two
configurations mediated by either a chemical reaction (chemi-
cal motor) or a demon (information motor). Spatial diffusion
and potential switches induce R ↔ L transitions at rates rij
and qij (i, j = R,L), respectively.

driven against a force F by a flashing periodic potential.
The potential fluctuates between two configurations con-
sisting of a series of offset infinite barriers that confine the
particle to boxes of length l. Within each box the particle
has two spatial states: z = L (left) and a higher energy
state R (right) with energy difference ∆E = Fl/2, where
energy units are set by fixing the temperature, kT = 1.
The probability pz(t) to be in state z = R,L at time t
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obeys the master equation [25]

ṗR(t) = (rRL + qRL)pL(t)− (rLR + qLR)pR(t)

ṗL(t) = (rLR + qLR)pR(t)− (rRL + qRL)pL(t).
(1)

Here, diffusive jumps within each box are thermally ac-
tivated with rates rLR (rRL) from R to L (L to R) that
verify detailed balance, rLR/rRL = e∆E [23]; whereas
transitions effected by potential switches occur with rates
qLR (qRL) for R → L (L → R) and are induced by a dif-

ferent mechanism in each motor, see Fig. 1. Furthermore,
these switches do not require energy, as we assume that
R (L) in the lower configuration in Fig. 1 has the same
energy as L (R) in the upper. The ratchet functions
as long as in the stationary state (ṗR(t) = ṗL(t) = 0)
the R → L switches occur more often than the reverse,
L → R. In which case, the stationary current J – the
average net number of jumps per unit time against the
load – is positive, and work is extracted at a rate [23, 26]

Ẇext = J∆E. (2)

It will prove convenient in our subsequent calculations
to assume that potential switches are slow compared to
the spatial transitions (q ≪ r). In this limit, the station-
ary solution of Eq. (1) [26],

pR =
1

1 + e∆E
, pL =

e∆E

1 + e∆E
, (3)

is in equilibrium with respect to diffusion, inducing a
current J = qLRpR − qRLpL.
In the chemical motor, the potential switches are bi-

ased by coupling them to an out-of-equilibrium chemical
reaction between species A and B through the formula
R + A ↔ L + B. Detailed balance enforces that the
chemical potential difference between A and B, ∆µ ≡
µA − µB > 0, satisfies ∆µ = ln(qLR/qRL). The resulting
scheme corresponds to the minimal tight-coupled chemi-
cal motor extensively used to model protein motors [23].
When ∆µ > ∆E, Ẇext [Eq. (2)] is extracted by consum-
ing chemical free energy per unit time Ḟchem = J∆µ.
The resulting entropy production rate is [23]

Ṡ(chem.mot.) = Ḟchem − Ẇext = J(∆µ−∆E) ≥ 0. (4)

To contrast with the chemical motor, we now consider
an information motor driven by feedback implemented by
a device, or so-called demon, that switches the potential
in response to measurements of the particle’s position.
In order for the information motor to reproduce the

stochastic potential switches of the ratchet, the demon
measures at random times according to a Poisson process
with rate α = qRL+ qLR [25]. This scheme may be inter-
preted as the demon attempting to make a measurement
in each small interval of time δt, but only succeeding with
probability αδt ≪ 1. When the demon succeeds, it mea-
sures R or L with a symmetric error, mistaking R (L) for

L (R) with probability ǫ = qRL/(qRL+qLR), and flips the
potential when the outcome is R. Moreover, the demon
records the sequence of potential switches in a memory
with states m, though for now we leave unspecified the
recording mechanism. When the demon fails to make a
measurement or the outcome is L, the memory is put in
state m = N for no-switch; whereas, when the outcome
is R, the memory is set to S for switch.
With this setup, potential switches occur at rates

qLR = α(1 − ǫ) and qRL = αǫ, as desired. Compari-
son with the chemical motor leads to the correspondence
∆µ = ln[(1 − ǫ)/ǫ]: ǫ = 0 is equivalent to ∆µ = ∞, and
ǫ = 1/2 corresponds to an equilibrium fuel, ∆µ = 0.
Even though the physical nature of the demon is

unspecified, we can still discuss the information mo-
tor’s thermodynamics using the framework developed in
Refs. [11, 19, 27–33]. Later, we validate this approach
by providing an explicit physical model for the demon.
The framework’s main features can be simply obtained
by introducing a nonequilibrium free energy [34, 35] for
a system whose mesoscopic states x are in local equilib-
rium [36]. To each system configuration X = {px, Fx},
characterized by free energy Fx of state x and probabil-
ity px to be in x, we assign a nonequilibrium free energy

(kT = 1)

F(X) =
∑

x

pxFx −H(X) ≡ F (X)−H(X), (5)

where H(X) is the Shannon entropy [37]. We call
F (X) =

∑

pxFx the bare free energy. In equilibrium,
peqx = e−Fx/Z with Z =

∑

e−Fx , and we recover Feq =
− lnZ. The utility of F stems from the observation that
the (irreversible) entropy production in a transition be-
tween configurations is the amount by which the work W
exceeds the increment in the nonequilibrium free energy
∆F [34, 35]:

∆iS = W −∆F ≥ 0. (6)

While ∆iS only equals the change in thermodynamic en-
tropy for transitions between equilibrium states, away
from equilibrium Eq. (6) still offers useful insight. It
bounds the work required for any process and can be
shown to be a measure of irreversibility. Moreover, when
a process connecting equilibrium states can be divided
into different stages connecting nonequilibrium configu-
rations, the sum of ∆iS over all these stages yields the
total change in equilibrium entropy.
We are interested in the entropy production for the

coupled memory and ratchet, X = (M,Z), during mea-
surement and feedback. An ideal classical measurement
correlates the initially uncorrelated memory and ratchet,
F(M,Z) = F(M) + F(Z), through an isothermal pro-
cess, (M,Z) → (M ′, Z ′), without affecting the ratchet,
Z ′ = Z, though possibly changing the nonequilibrium
free energy of the memory to F(M ′) 6= F(M) [5, 11].
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If before and after the measurement the bare free ener-
gies are additive, F (M,Z) = F (M) + F (Z), then the
nonequilibrium free energy can be cast into

F(M ′, Z ′) = F(M ′) + F(Z) + I(M ′, Z), (7)

where the mutual information

I(M ′, Z) ≡ H(M ′) +H(Z)−H(M ′, Z) (8)

measures correlations, satisfying I ≥ 0 with I = 0
only when M ′ and Z are independent [37]. Conse-
quently, the creation of correlations, or measuring, in-
creases the nonequilibrium free energy, requiring work
Wmeas and producing entropy according to Eqs. (6) and
(7) [5, 11, 33],

∆iSmeas = Wmeas −∆F(M,Z)

= Wmeas −∆F(M)− I(M ′, Z) ≥ 0,
(9)

where ∆F(Y ) = F(Y ′)−F(Y ).
Once the correlations have been established, they can

be exploited through a subsequent isothermal process,
(M ′, Z ′) → (M ′′, Z ′′), that extracts work Wext from the
ratchet without altering the memory, F(M ′′) = F(M ′).
When all the correlations are removed [I(M ′′, Z ′′) = 0],
we call this scenario feedback. For the cyclic processes
we consider here, F(Z ′′) = F(Z), and the entropy pro-
duction is [Eq. (6)] [27, 31, 33, 34]

∆iSfb = I(M ′, Z)−Wext ≥ 0. (10)

Only when the measurement is reversible (∆iSmeas = 0)
does Eq. (10) represent the total entropy production for
the entire measurement and feedback cycle. In general,
∆iSfb is only a lower bound.
Now, since the information motor utilizes feedback, we

can use Eq. (10) to calculate its (minimum) entropy pro-
duction rate. To this end, we calculate the mutual in-
formation. The fast diffusion implies that the ratchet
begins each δt with the same equilibrium probability den-
sity [Eq. (3)], independent of past measurements. Conse-
quently, each interval is independent and can be analyzed
separately. We then obtain I by substituting the prob-
ability density p′z,m for the composite system after the
measurement into Eq. (8) [26]

İ =
I(M ′, Z)

δt
≃ pRqLR ln

qLR

qS
+ pLqRL ln

qRL

qS
, (11)

where qS = (p′R,S + p′L,S)/δt is the switching rate. Then
by combining Eqs. (2), (10), and (11), we find the entropy
production rate

Ṡ(info.mot.) = ∆iSfb/δt = İ − J∆E ≥ 0. (12)

In Fig. 2, we compare Ṡ(chem.mot.) [Eq. (4)] and
Ṡ(info.mot.) [Eq. (12)] as functions of ∆E. The differ-
ent switching mechanisms lead to qualitatively differ-
ent thermodynamics, even though the dynamics are the
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FIG. 2. Plot of the entropy production rates for the chemi-
cal motor, Ṡ(chem.mot.) [Eq. (4)], and the information motor,

Ṡ(info.mot.) [Eq. (12)], as functions of the external force ∆E
for qRL = 1 and ∆µ = ln[(1− ǫ)/ǫ] = 1.

same. Most notably, the chemical motor achieves the
reversible limit only at the stall force ∆E = ∆µ when
J = 0, whereas the information motor can operate
with zero entropy production at a finite current when
∆E = ∆µ/2. In this case, the feedback is reversible in
the same spirit as other reversible controlled systems an-
alyzed in Refs. [19, 20].
To clarify the origin of this difference, we now ana-

lyze a physical realization of the information motor where
the memory and measurement mechanism are included
explicitly, building on the mechanical Maxwell’s demon
introduced by Mandal and Jarzynski [38].
We model the memory as a tape composed of a series

of two-state cells (or bits), with states m = N,S, and
free energies FN = 0 and FS = f0 → ∞. Initially, each
cell is in N – which is equilibrium (pN = 1, pS = 0). One
at a time, each cell couples to the motor for a duration
τ1, short compared to the diffusion (rτ1 ≪ 1), through
a fast reaction that induces potential switches according
to the scheme in Fig. 3 at a rate of order γ ≫ r. We bias
the R → L potential switches by mediating them with
the same out-of-equilibrium chemicals, A and B, used in
the chemical motor with ∆µ = ln(qLR/qRL) through the
formula R+N +A ↔ L+S+B. Furthermore, we lower
the free energy of S quasistatically using the protocol
FS(t) from FS(0) = f0 to FS(τ1) = f ≡ − ln(qRLδt) ≫
1. Thus, even though the diffusion is frozen during τ1,
each of the reactions R + S ↔ L + N and R + N +
A ↔ L+S+B independently evolve through a sequence
of equilibrium states. The dynamics during this period
follows the master equation [25]

ṗR,N (t) = γpL,S(t)− γeFN−FS(t)+∆µpR,N (t)

ṗL,N(t) = γpR,S(t)− γeFN−FS(t)pL,N(t),
(13)

with pL,S(t) = pRpN − pR,N (t) and pR,S(t) = pLpN −
pL,N(t). In the limit γτ1 ≫ 1, we reproduce dynamically
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FIG. 3. Illustration of the information motor fed by a tape of
two-state (N and S) cells each initially in N and separated
by a time interval τ2 (upper figure). Each cell couples to the
ratchet for a duration τ1 during which FS is quasistatically
lowered from f0 → ∞ to f while the reactions R+S ↔ L+N
and R +N + A ↔ L + S + B individually evolve in a time-
dependent free energy landscape (lower figure).

the same correlations as before, which may be verified by
comparing the solution at τ1
(

p′R,N

p′L,N

)

=

(

pR[1− α(1− ǫ)δt]
pL(1− αǫδt)

)

=

(

pR(1− qLRδt)
pL(1− qRLδt)

)

,

(14)
to the density of the information motor after the demon
has acted [26]. Next, the cell decouples, and the motor
relaxes to equilibrium by spatial diffusion for a time τ2 ≫
1/r such that δt = τ1 + τ2 is the total cycle time. The
various time scales can be summarized as γ−1 ≪ τ1 ∼
Ḟ−1
s ≪ r−1 ≪ τ2 ≪ α−1.
The thermodynamic analysis of each δt-cycle naturally

decomposes into two steps: the establishment of correla-
tions, or measurement, during τ1, and the spatial relax-
ation during τ2 when the correlations are converted into
work.
During τ1, work is done by the A ↔ B reaction,

Wchem = p′L,S∆µ [Eq. (14)], and by quasistatically low-
ering FS from f0 → ∞ to f , which to order δt is

Wlower =

∫ f

f0

[

pR
1 + ef ′−∆µ

+
pL

1 + ef ′

]

df ′ ≃ −p′S , (15)

where p′S = qSδt = p′R,S + p′L,S. Within the nonequilib-
rium free energy framework, this work is interpreted as
being used to form correlations I(M ′, Z) [Eq. (11)] while
changing the memory’s nonequilibrium free energy from
F(M) = 0 (pN = 1) by ∆F(M) = F(M ′) = p′Sf−h(p′S),
where h is the binary Shannon entropy [37]. Insert-
ing these expressions into Eq. (9), reveals, after a cum-
bersome though straightforward algebraic manipulation,

that

∆iSmeas = Wlower +Wchem −∆F(M)− I(M ′, Z) = 0,
(16)

saturating the bound in Eq. (9). Our protocol is re-
versible, because the initially equilibrium memory (f0 →
∞, pS = 0) couples to an equilibrium ratchet, followed
by a quasistatic isothermal shift in FS .

The cycle is completed as the motor relaxes. I is con-
verted into work Wext = Jδt∆E through a decrease of
the nonequilibrium free energy to F(M ′′, Z ′′) = F(M ′)+
F(Z). The resulting entropy production from Eq. (6) is
∆iSdiff = I(M ′, Z) − Jδt∆E ≥ 0, reproducing per cy-
cle the entropy production rate of the information mo-
tor ∆iSdiff/δt = Ṡ(info.mot.). Thus, the total entropy
production per cycle is ∆iStot = ∆iSmeas + ∆iSdiff =
Ṡ(info.mot.)δt, proving that we have a nonautonomous
model for the information motor without explicit feed-
back that has the same dynamics and thermodynamics.

Contact can be made with a traditional statement of
the second law if we complete the cycle by restoring the
memory to its initial configuration [2, 3]. From Eq. (6),
this requires a minimum work Wrest = −∆F(M). Using
this minimum, the total work is Wtot = Wlower+Wchem+
Wrest − Wext = I − Wext, by virtue of Eq. (16). Thus,
plotted in Fig. 2 is simply Ṡ(info.mot.) = Ẇtot, the total
energy dissipated in this cyclic isothermal process.

From this analysis, we conclude that the disparity be-
tween Ṡ(info.mot.) and Ṡ(chem.mot.) originates in the rapid

and reversible measurements that allow potential flips in
the information motor to occur with zero entropy pro-
duction, unlike in the chemical motor where flips pro-
duce entropy. Such reversible measurements are possible
due to the time-scale separation between the tape’s in-
ternal transitions and the current (γ ≫ α), which allows
the measurement (and flip) to be implemented using a
nonautonomous reversible process. This mechanism al-
lows for reversible transport – a nonzero current without
entropy production – and can be regarded as an adia-
batic pump [39–42]. Subsequently resetting the memory
does not alter the information motor’s entropy produc-
tion, since it can always be accomplished reversibly.

In summary, we have examined an explicit physical
mechanism that stores information in a memory to be
used later. This mechanism relies on the two-step inter-
action mediated by the tape that creates long-lived cor-
relations. The sequential structure of the tape, however,
seems less important: a reservoir of molecules N and S
would produce the same behavior, as long as there was
a mechanism establishing correlations for fixed intervals.
Remarkably, similar long-lived complexes are common in
biology: they can be observed in molecular motors [43],
enzymatic catalysis [44], and sensory adaption [45]. It
would be interesting to check if such complexes serve as
a free energy storage and to uncover their role in infor-
mation processing.
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