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In Ref. [1] the authors put forward a concept of co-
herent electron cooling of hadrons. At the core of the
concept lies the following idea: a density perturbation
induced by an hadron in a co-propagating relativistic
electron beam is amplified by several orders of magni-
tude in a free electron laser (FEL). After the FEL the
electron beam is merged again with the hadron one and
the amplified electric field in the electron beam acts back
on each hadron resulting, after many repetitions, in cool-
ing of the hadron beam. The efficiency of the process is
critically determined by the amplification factor of the
longitudinal electric field induced by the hadron in the
electron beam. The authors claim that this amplification
is equal to the FEL gain factor. In this comment we show
that it is actually considerably smaller than the (conven-
tionally defined) FEL gain with the smallness parameter
to be the relative bandwidth σω/ω0 of the FEL amplifier.
In our analysis we use a standard one-dimensional lin-

ear FEL theory which gives a reasonably good approx-
imation for typical parameters of modern FELs, (see,
e.g., [2, 3]). We assume a helical undulator with the un-
dulator parameter K, the undulator period λu = 2π/ku
and length lu. An electron beam with a localized line den-
sity perturbation δn0(z) = Zδ(z) induced by an hadron
(δn0 has dimension of inverse length, z is the longitudinal
coordinate inside the bunch) enters the FEL.
We expand δn0(z) into Fourier integral and then use

the linear FEL theory [3] to propagate each harmonic
from the beginning to the end assuming a high-gain
regime of the FEL. Making the inverse Fourier transfor-
mation at the exit we find the final density in the beam:
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where τ = kulu, k0 = ω0/c = 2γ2ku/(1+K2) corresponds
to the fundamental FEL wavelength and ρ is the standard
FEL parameter defined by
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with γ the electron beam Lorentz factor, S the elec-
tron beam transverse area, I the electron beam cur-
rent and IA = mc3/e ≈ 17 kA the Alfven cur-
rent. Introducing the standard power gain length
Lg for the FEL, L−1

g = 2
√
3ρku, we replace ρτ by

lu/2
√
3Lg. Note that in a high-gain FEL lu ≫ Lg.

It follows from (1) that the maximal value of |δn| is
max |δn| = 31/4π−1/2k0Zρ(Lg/lu)

−1/2elu/2Lg . The lon-
gitudinal electric field δE‖(z, τ) generated by the density
perturbation δn(z, τ) in the beam is δE‖ = 4πeδn/k0S,
and
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The initial electric field of the localized perturbation in
the 1D model is E0 = 2πZe/S. Hence we can write the
result (3) as max |δE‖| = GE0, where the amplification

factor G is
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The factorG can be expressed through the standard (am-
plitude) FEL amplification factor G0. The latter is usu-
ally defined as a ratio of the final (exit) amplitude of a
sinusoidal density perturbation at the fundamental wave-
length 2π/k0 to its initial value; as it follows from the
linear FEL theory, in high-gain regime, G0 = 1

3e
lu/2Lg .

We see that the amplification factor of the longitudinal
field (4) is much smaller than G0:
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in contrast to the statement in [1] where G is identified
with G0. The formula on the right hand side of (5) is
more general then (4) and is valid even in 3D FEL case.
Given that the parameter ρ is of order of 10−3 in a typical
modern FEL, the amplification of the longitudinal field
is likely to be two or three orders of magnitude smaller
than G0.
As discussed in [1], the maximally achievable FEL gain

is limited by FEL saturation. The saturation length
lsat can be estimated from the linear FEL theory if one
equates the FEL power exponentially growing from shot
noise in the electron beam to the FEL power in saturation
which is approximately equal to ργmc2I/e (see [2, 3]).
Using such an estimate and the parameters quoted in [1]
for a hypothetical FEL for an LHC cooler: λ0 = 10 nm,
I = 100 A, γ = 7.6 × 103 and assuming the beam area
S = 150µm × 150µm, we found ρ = 8.7 × 10−4 and
the saturation length lsat = 18.3Lg. Assuming lu = lsat,
Eq. (4) givesG = 2.8 which is more than two orders short
of the value G = 500 assumed by the authors of [1].
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