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Conformal crystals are non-uniform structures created by a conformal transformation of regular
two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning
array exhibit substantially stronger pinning effects over a much larger range of field than found for
random or periodic pinning arrangements. The pinning enhancement is partially due to matching
of the critical flux gradient with the pinning gradient, but the preservation of local ordering in the
conformally transformed hexagonal lattice and the arching arrangement of the pinning also play
crucial roles. Our results can be generalized to a wide class of gradient-driven interacting particle
systems such as colloids on optical trap arrays.

PACS numbers: 74.25.Wx,74.25.Uv

One of the most important problems for applications
of type-II superconductors is how to create high critical
currents or strong vortex pinning over a wide range of ap-
plied magnetic fields1. For over sixty years, it has been
understood that the ground state vortex structure is a
hexagonal lattice2, so many methods have been devel-
oped to increase the critical current using uniform pin-
ning arrays that incorporate periodicity to match the vor-
tex structure3–13. The pinning is enhanced at commensu-
rate fields when the number of vortices equals an integer
multiple of the number of pinning sites, but away from
these specific matching fields, the enhancement of the
critical current is lost14. Efforts to enhance the pinning at
incommensurate fields have included the use of quasicrys-
talline substrates15 or diluted periodic arrays16–20, where
studies show that new types of non-integer commensu-
rate states can arise in addition to the integer matching
configurations. Hyperbolic tessellation arrays were also
recently considered21.

Part of the problem is the fact that under an applied
current, the vortex structure does not remain uniform
but instead develops a Bean-like flux gradient22: the vor-
tex density is highest at the edges of the sample when
the magnetic field is increased, and highest in the cen-
ter of the sample when the magnetic field is removed
and only trapped flux remains inside the sample. As a
consequence, a portion of the pinning sites in uniform
pinning arrays are not fully occupied, suggesting that a
more optimal pinning arrangement should include some
type of density gradient to match the critical flux gra-
dient. Here we show that a novel type of pinning array,
based on a structure known as a conformal crystal, pro-
duces a much higher critical current over a much wider
range of magnetic fields than any pinning geometry con-
sidered up until now. Conformal crystals not only have
a density gradient, but also preserve the local ordering
normally associated with periodic pinning arrays.

Conformal crystals are a class of two-dimensional (2D)
structures created by the application of a conformal
(angle-preserving) transformation to a regular lattice in
the complex plane25,26. Figure 1 illustrates a conformal
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Figure 1: A conformal transformation is applied to the semi-
annular section of a regular hexagonal lattice shown in (a) to
create the conformal crystal structure shown in (b)27. Points
A − F in (a) are mapped by the transformation to points
a− f in (b) respectively. The straight contour lines connect-
ing nearest neighbor lattice points in (a) are bent into arcs
in (b), but the local six-fold ordering of the lattice points is
maintained. Pinning sites are placed at the vertices formed
by the intersections of the contour lines in (b).

crystal obtained via the transformation of a hexagonal
lattice27. The contour lines connecting nearest neigh-
bors, which are straight lines for the original hexagonal
lattice, are bent into arcs but still cross at angles of π/3,
preserving the sixfold coordination of individual pinning
sites in spite of the clear density gradient. To create
a pinning lattice, we place pinning sites at the vertex
locations where the contour lines intersect. Conformal
crystal structures have been studied experimentally for
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Figure 2: The gradient-driven sample geometry consists of
two conformal crystals facing each other in the pinned region.
Open circles are pinning site locations. Vortex addition and
subtraction occurs in the pin-free region labeled “A.”

repulsively interacting magnetic spheres confined to a 2D
container that is tilted so that the gravitational force on
the particles produces a mechanically stable but nonuni-
form crystal26. Other systems where conformal crystals
arise include foams under an external field31,32 and large
arrays of classical Coulomb charges in confined circular
potentials where local triangular ordering occurs along
curved lattice lines33.

Simulation– We conduct a flux gradient density simu-
lation of the type previously used to study vortex critical
states and magnetization with random34,35 and periodic
pinning arrays14, featuring a 2D slice (in the x-y plane) of
a T = 0 superconducting slab, with rigid vortices parallel
to the sample edge (H = Hẑ). We work in the London
limit of vortices with pointlike cores. Figure 2 shows our
simulation geometry, featuring an outer pin-free “exter-
nal” region surrounding a central pinned “sample” region
that consists of two conformal crystals placed with their
highest density regions adjacent to the pin-free region.
Details on the construction of the conformal crystal are
given in the supplemental material27. We use periodic
boundary conditions in the x- and y-directions and con-
sider a 36λ × 36λ system with pinned region extending
from x = 6λ to 30λ, where λ is the penetration depth.
This geometry was previously shown to be large enough
to capture accurately the behavior of the magnetization
curves14,34,35.

The dynamics of vortex i are obtained by integrating
the overdamped equation η(dRi/dt) = F

vv
i + F

vp
i + F

d.
Here η is the damping constant which is set equal to
unity. The vortex-vortex interaction force is F

vv
i =

∑Nv

j=1
sisjF0K1(Rij/λ)R̂ij , where K1 is the modified

Bessel function, Ri is the location of vortex i, Rij =

|Ri − Rj|, R̂ij = (Ri − Rj)/Rij , F0 = φ2

0
πµ0λ

3, and
φ0 is the flux quantum. The sign prefactor si is +1
for a vortex and −1 for an antivortex. The pinning
sites are modeled as Np non-overlapping parabolic traps

with F
vp
i =

∑Np

k=1
(Fpr

p
ik/rp)Θ((rp − rpik)/λ)R̂

p
ik, where

R
p
k is the location of pinning site k, rpik = |Ri − R

p
k|,

R̂
p
ik = (Ri − R

p
k)/r

p
ik, Θ is the Heaviside step func-

tion, rp is the pinning radius, and Fp is the pinning
strength. Unless otherwise noted, we take rp = 0.12λ
and Fp = 0.55F0, placing us well outside the collective
pinning regime. In this work, we always maintain the pin-
ning density at a nominal value of 1.0λ−2, corresponding
to Np = 864 pins. F

d = Fdx̂ represents an external driv-
ing force arising from an applied current, which is used to
measure transport properties; this is kept at zero for all
magnetization measurements. All forces are measured in
units of F0 and all lengths in units of λ. The flux density
H in the unpinned region is measured in units of Hφ, the
field at which the average unit density of vortices equals
the average unit density of pinning sites.

To perform a complete field sweep, we begin with zero
vortex density and then quasistatically add vortices in
the unpinned region (labeled “A” in Fig. 2) at randomly
chosen nonoverlapping positions. As the vortex density
increases in the pin-free region, the vortices drive them-
selves into the pinned region due to their own repulsive
interactions, creating a flux density gradient14,34,35. We
then reverse the field by first removing vortices from the
pin-free region and then adding antivortices, which repel
each other but are attracted to vortices. When a vortex
and antivortex come within 0.3λ of each other, they are
both removed from the system to simulate an annihila-
tion event. To complete an entire magnetization loop,
we continue to add antivortices until the external field
reaches its most negative value, and then remove antivor-
tices from the pin-free region to bring the external field
back up to zero. The average magnetization M is the dif-
ference between the flux density H in the unpinned region
and B in the pinned region, M = −(1/4πV )

´

(H−B)dV ,
where V is the sample area. The critical current Jc can
be derived from the magnetization curve using the Bean
critical state model22, as described in Refs.28–30.

Results– In Fig. 3 we plot an example of complete hys-
teresis loops M vs H/Hφ for the conformal pinning array
(CPA) and arrays with randomly distributed pins. Each
sample contains the same number Np of pinning sites
of equal size and strength. In comparison with random
pinning (shown in red), we find that M is much higher
at all fields for the CPA (shown in black). In Fig. 4(a)
and (b), we plot the magnetization loop half-width MHW

measured at an intermediate field H/Hφ = 1.0 and a
high field H/Hφ = 1.4, for a variety of pinning sizes and
strengths. The CPA consistently enhances the magne-
tization by a factor of four relative to random pinning.
The flux profiles plotted in Suppl. Fig. 127 show that the
random array produces a Bean-like profile that becomes
shallower as H increases. In contrast, at higher fields the
CPA does not have a uniform flux gradient but instead
develops a double slope profile, with a larger flux gradi-
ent near the edge of the sample and a much shallower or
nearly flat flux profile in the center of the sample. As H
increases, the sharper slope region decreases in width and
is replaced by the shallow slope region. Consequently, the
CPA maintains a large M even for high values of H .
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Figure 3: The magnetization M vs H/Hφ. Outer dark (black)
curve: a sample with a conformal pinning array (CPA); inner
light (red) curve: a sample with a uniformly dense random
arrangement of pinning sites; middle light (green) curve: a
random arrangement of pinning sites with a pinning gradient
equivalent to the CPA.
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Figure 4: (a-b) MHW , the half-width of the magnetiza-
tion loop, measured at H/Hφ = 1.0 (filled symbols) and at
H/Hφ = 1.4 (open symbols), and normalized to MHW for
the random pinning array (red squares). Black circles: CPA;
green triangles: random array with CPA-equivalent pinning
gradient. (a) MHW vs Fp for fixed rp = 0.12; (b) MHW vs
rp for fixed Fp = 0.55. (c) 〈Vx〉 vs Fd for vortices driven
across a CPA (black), random array (red), and random array
with pinning gradient (green). (d) Magnetization loops for
the CPA (black) compared to periodic pinning arrays, square
(blue) and triangular (purple), at Fp = 0.55 and rp = 0.12.

Since the CPA has a pinning gradient, it could be pos-
sible that any type of pinning array with an equivalent
gradient would also exhibit a pinning enhancement com-
pared to uniform pinning arrays and could be just as
efficient at pinning as the CPA. We find that this is not
the case. In Figs. 3 and 4(a,b), we show magnetization
results for a random pinning array with pinning gradient

equivalent to the CPA. The random pinning with gradi-
ent exhibits a modest enhancement of M compared to the
uniform random pinning array, but trails the CPA signif-
icantly for all but the very lowest fields: as Figs. 4(a,b)
indicate, the loop half-width for the CPA remains larger
by a factor of 3 to 4. This result indicates that other
properties of the CPA, and not merely the pinning gra-
dient, are largely responsible for the enhanced pinning.
We find that the structure of the CPA suppresses certain
modes of vortex motion. For example, in random pin-
ning arrays, the distribution of pins is inhomogeneous; as
a consequence, persistent river-like vortex flow patterns
arise through regions where the pinning density is slightly
lower than average35. In contrast, because the CPA is an
ordered structure, it lacks any such weak spots through
which vortices would prefer to flow.

To confirm the effectiveness of the CPA at enhancing
the critical current compared to random pinning arrays,
we examine transport properties by field-cooling the sys-
tem at H/Hφ = 1, driving the vortices with a slowly
increasing force Fd = Fdx̂, and measuring the average
vortex velocity in the drive direction 〈Vx〉 to produce the
equivalent of an experimental V (I) curve36. The trans-
port geometry and simulation method are detailed in the
supplemental material27. Fig. 4(c) shows velocity-force
curves for the CPA and random pinning arrays. The
CPA clearly exhibits an increased resistance to flux flow,
with a much larger depinning threshold. Above depin-
ning, vortices continue to move more slowly through the
CPA for a wide range of driving force.

We next address whether the conformal pinning arrays
produce higher pinning compared to other non-random
pinning arrays. In Fig. 4(d) we plot M vs H/Hφ for the
CPA and for square and triangular periodic pinning ar-
rays with the same average pinning density and strength.
The CPA has the highest value of M over most of the
range of H/Hφ except at the first matching field, where
M is enhanced in the periodic pinning arrays due to a
commensurability effect14. There are no peaks or other
anomalies in M for the CPA since the triangular ordering
in this array is only local. This shows that although a
periodic pin structure can strongly enhance the pinning,
the enhancement occurs only for a very specific match-
ing field. In contrast, the CPA produces a significant
enhancement of the pinning over a very broad range of
fields, extending well above the first matching field. This
enhancement arises not only from the presence of a pin-
ning gradient which periodic pinning lacks, but also be-
cause the arching structure of the CPA blocks easy-flow
channels, which are present along the symmetry direc-
tions of periodic pinning arrays37,38 and cause a drop in
the critical current above a commensurate field.

To gain further insight into the effectiveness of the
CPA, we consider the details of vortex entry. Since the
vortex system is maintained in a critical state when mea-
suring M , the vortex motion can be characterized by
avalanche dynamics39. In Fig. 5(a), we show the proba-
bility distribution P (nm) for the number nm of vortices
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Figure 5: (a) P (nm), the distribution of the number of vor-
tices nm in individual avalanches occurring as the field H/Hφ

is raised from 0.65 to 2.0, for the CPA (black circles), uniform
random pinning (red squares), and random pinning with gra-
dient (green triangles). (b-c) High-field behavior of pinning
arrays on the initial ramp up only: (b) magnetization M ; (c)
fraction of occupied pinning sites P . CPA: black; uniform
random array: red; random with gradient: green. The dotted
line indicates H/Hφ = 2 where M and P both drop for the
CPA.

participating in individual avalanche events during ramp-
up. For the CPA, P (nm) is more heavily weighted toward
large events compared to the random arrays. This is due
to the suppression of easy vortex entry channels by the
CPA. In order for vortices to enter the CPA sample, con-
siderable pressure must build up in the external region,
and the resulting avalanches are larger.

Finally, we characterize the conditions under which the
effectiveness of the CPA begins to decrease. In Fig. 5(b)
we compare M versus H/Hφ for the CPA and uniform
random arrays up to H/Hφ = 4.0. The enhanced pin-
ning for the CPA is most pronounced below H/Hφ = 2.0;
above this field, M remains larger for the CPA than for
the random pinning array, but the size of the enhance-
ment is reduced. In Fig. 5(c) we plot the corresponding
pin occupancy P , which is the fraction of pinning sites
occupied by vortices. For the random pinning array, P
monotonically increases over the entire range of H/Hφ.
In contrast, after running well above the P value for the
random pinning array at lower fields, P for the CPA rolls
over and begins to decrease with increasing field above
H/Hφ ≈ 2. This is the same field at which the higher gra-
dient region seen in Suppl. Fig. 1(a) begins to disappear

from the sample, as shown in Suppl. Fig. 227. Since the
pinning density at the edge of our CPA is approximately
2, all of the pinning sites near the edge of the sample be-
come occupied for H/Hφ ≈ 2. For H/Hφ < 2, the vortex
density just outside the sample can be matched purely
by pinned vortices just inside, but for H/Hφ > 2, pres-
sure from outside the sample forces interstitial vortices
to enter, depinning some of the vortices already present
and producing a drop in P and M .

The random pinning array always has empty pinning
sites near the edge of the sample in places where two
pins happen to be so close together that the vortex-
vortex interaction energy would be prohibitively high if
both pins were occupied simultaneously. As the field in-
creases, these pinning sites gradually become occupied.
Even though P for the CPA falls below P for the ran-
dom array at higher fields, the pinning enhancement re-
mains significantly stronger for the CPA, as the presence
of weak spots in the random array facilitates vortex entry
deep into the sample region.

Conclusion– We demonstrate strongly enhanced vortex
pinning by a conformal crystal array of pinning sites. The
conformal crystal is constructed by a conformal transfor-
mation of a hexagonal lattice, producing a nonuniform
structure with a gradient where the local sixfold coor-
dination of the pinning sites is preserved, and with an
arching effect. The conformal pinning arrays produce
significantly enhanced pinning over a much wider range
of field than that found for other pinning geometries with
an equivalent number of pinning sites, such as random,
square, and triangular. We show that the pinning en-
hancement is not simply due to the pin density gradient,
but is also due to the preservation of the local ordering
of the pinning sites and to the arching pin arrangement,
which prevent the formation of easy channels of vortex
flow. The pinning enhancement we find is substantial
and will be important for a wide range of superconduc-
tor applications and flux control. The effects of confor-
mal crystalline substrates on ordering or dynamics of a
monolayer of particles could also be studied for vortices
in Bose-Einstein condensates on optical lattices24 or col-
loidal particles on optically created substrate arrays23.
The enhanced pinning also suggests that conformal ar-
rays could be used to increase friction for particle-surface
interactions.

This work was carried out under the auspices of the
NNSA of the U.S. DoE at LANL under Contract No.
DE-AC52-06NA25396.
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