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Postprocessing of diffraction patterns of completely randomly oriented helical particles, as mea-
sured, for example, in so-called “diffract-and-destroy” experiments with an x-ray free electron laser
(XFEL) can yield “fiber diffraction” patterns expected of fibrous bundles of the particles. This will
allow “single-axis alignment” to be performed computationally, thus obviating the need to do this by
experimental means such as forming fibers, laser- or flow-alignment. The structure of such particles
may then be found by either iterative phasing methods or standard methods of fiber diffraction.

PACS numbers: 61.05.-a,61.05.C-,61.05.jd

Fiber diffraction is responsible for some of the best
known work on the structure determination of matter.
Examples are the structure of deoxyribose nucleic acid
(DNA) [1] and the structure of helical viruses, e.g. [2].
The long filamentous particles are drawn into a fiber
which may be regarded as a bundle in which the parti-
cles have their long axes parallel to one another with ran-
dom interparticle distances and random azimuthal orien-
tations. The seminal work in this field is that of Cochran,
Crick, and Vand [3], hereafter denoted by CCV. If the
scattering vector q is represented by the reciprocal space
cylindrical coordinates (R,ψ, ζ), it was shown by CCV
that scattered intensity from a helix is found only at dis-
crete values of ζ = ζl = 2πl/c, where c is the value of
the repeat distance along the helix axis, and l an integer
specifying the so-called “layer line” on a diffraction pat-
tern observed on a detector placed parallel to the fiber
and perpendicular to the wavevector of an incident plane
wave of radiation, e.g. x-rays. CCV also deduced that
the intensity of a particular layer line l may be written

I(R, ζl) =
∑

n,n′

Gn(R, ζl)G
∗

n′ (R, ζl) exp [i(n− n′)ψ] (1)

where

Gn(R, ζl) =
∑

j

fjJn(Rrj) exp (−inφj) exp (iζlzj), (2)

fj the atomic form factor of atom j with cylindrical co-
ordinates (rj , φj , zj), and J is a Bessel function. The
allowed values of n for a helix consisting of u subunits
(e.g. proteins) per repeat distance along the c axis (the
c-repeat unit [4]) consiting of ν turns of the helix (a uν
helix) are determined by the helix selection rule

l = nν +mu. (3)

wherem is another integer. Thus, we see that, for a given
layer line, l, the allowed values of n andm may differ only
by u and ν, respectively [3] (where the differences have
opposite signs). Since the azimuthal dependence of each
term in the expression (1) for the intensity on a layer
line is exp [i(n− n′)ψ], each term will have an integral
multiple of u-fold azimuthal symmetry.

The structure determination problem in so-called
“diffract-and-destroy” experiments with an x-ray free
electron laser (XFEL) [5] is at least superficially quite
distinct. In that case, reproducible particles are injected
into an XFEL beam in completely random 3D orienta-
tions, and would not therefore in general be expected
to show up the usual layer-line structure of an oriented
helix. Yet we show in the following that appropriate com-
putational processing of the ensemble of such diffraction
patterns enables the reconstruction of just such a fiber
diffraction pattern.

Due to the randomness of the 3D orientations, the nat-
ural choice for reciprocal space coordinate system in this
case is the spherical rather than the cylindrical one. A
way to perform structure determination in that case is
via the determination of the average over a large number
of the measured diffraction patterns of the angular cor-
relations of their internsities [6]. This is quite similar to
a method proposed earlier [7] for the extraction of struc-
tural information from an ensemble of randomly oriented
identical molecules in solution. From the average over all
measured diffraction patterns of angular autocorrelations
of the measured intensities on a resolution ring of radius
q, it is possible to extract [6, 7] an orientationally inde-
pendent quadratic function

BL(q) =
∑

M

I∗LM (q)ILM (q) (4)

of the spherical harmonic coefficients ILM (q) of the scat-
tered intensity distribution in 3D reciprocal space (L and
M are the usual angular momentum quantum numbers).
At least in the case of regular viruses, which Caspar and
Klug [8] have suggested tend to be either icosahedral
or helical, it is possible to find the 3D distribution of
scattered intensities of a single particle from diffraction
patterns of random particle orientations, as expected to
be measured in above-mentioned experiments with an
XFEL.

In the case of an icosahedral particle [9], the spherical
harmonic expansion coefficients may be written

ILM (q) = gL(q)aLM (5)
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where the gL(q) are a set of (real) icosahedral harmonic
expansion coefficients and aLM are a set of real coeffi-
cients calculable from a stipulation of the point group
symmetry. (e.g. [10]). Substitution of (5) into (4) yields

BL(q) = g2L(q). (6)

Consequently, one may deduce the magnitudes of the
icosahedral harmonic expansion coefficients from the
square roots of the BL(q)’s. The signs of the quanti-
ties gL(q) may be determined from quantities related to
the so-called ring triple correlation (RTC) function [11]

C3(q,∆φ) = 〈I(q, φ)2I(q, φ+∆φ)〉DP (7)

calculable from the intensities I(q, φ) of resolution ring q
and azimuthal angle φ in the measured diffraction pat-
terns. As with the ring autocorrelation function (RAC)
[12] used to find BL(q), due to the randomness of parti-
cle orientations over the ensemble of diffraction patterns
[6, 7], the correlation function on the LHS does not de-
pend on the particular value of φ chosen. With a full
knowledge of the amplitudes and phases of the quantities
gL(q), the 3D distribution of scattered intensities from a
single particle may be found via

I(q) =
∑

L

gL(q)IL(θ, φ) (8)

where the quantities IL(θ, φ) are the so-called icosahedral
harmonics, defined by

IL(θ, φ) =
∑

M

aLMYLM (θ, φ). (9)

In the case of a helical particle, such as a helical virus,
the same problem of the sum overM in (4) may be over-
come by a different argument. Since the allowed values of
n differ by at least u, if we take the ζ-axis of the spheri-
cal coordinate system also to be parallel to the helix axis,
there will be no values of M (for the scattered intensity)
between 0 and ±u on any layer line. But M (the same
quantum number in a spherical coordinate system with
the same ζ-axis) cannot take values of ±u until L be-
comes equal to at least u. In the case of tobacco mosaic
virus (TMV), which is a 493 helix, this means that from
the properties of angular momenta, for all values of L up
to L = 48, needed to describe the diffraction volume up
to a resolution of about 12 Å, the only permitted value
of M is zero. The 3D scattered intensity distribution of
a helical virus may be found by first finding the spherical
harmonic expansion coefficients of a single repeat unit of
height c, which in the case of TMV is 69 Å. In general,
for a particle of radius R, a diffraction volume up to a
reciprocal-space radius qmax may be calculated with the
use of angular momentum quantum numbers up to Lmax,
where, e.g. [13]

Lmax = qmaxR. (10)

In the case of TMV, the radius R may be taken to be
34.5 Å, half the c-repeat length in the direction of the
c-axis and about 100 Å in the (the helix radius) direc-
tion perpendicular to this axis. Thus, the use of angu-
lar momentum quantum numbers up to Lmax=49 allows
the accurate calculation of the diffraction volume up to
qmax = Lmax/R, or until at least qmax ≃ 0.5 Å−1, i.e.
a real-space resolution of 2π/qmax ≃ 12 Å, if sampled at
the layer planes (which is what the layer lines of fiber
diffraction become in 3D reciprocal space). Since the
diffraction volume of an entire helical virus is just that
of a single c-repeat unit sampled at values of q permitted
by a “shape transform” factor due to repeated units of
three helical pitchess of a single TMV particle, it follows
that the diffraction volume of a helical virus may be de-
termined to a resolution of 2πR/u by including only the
M = 0 term in (4). That is, up to a resolution of about
12 Å, the 3D “diffraction volume” from TMV has perfect
azimuthal symmetry.
If only theM = 0 term need be included in (4), we may

determine a 3D diffraction volume up to this resolution
limit from

I(q) =
∑

L

IL0(q)YL0(θ, φ) (11)

with the magnitudes of the (real) coefficients IL0(q) de-
termined by

|IL0(q)| =
√

BL(q, q) (12)

and their signs determined, as above from the RTC func-
tion [11]. Once an oversampled [14] diffraction volume
of a single particle has been determined from (11), the
electron density of the particle that gave rise to it may be
determined by an iterative phasing algorithm, e.g. [15].
BL(q) and TL(q) may be extracted from the averages

over all measured XFEL diffraction patterns (from ran-
dom particle orientations) of the angular autocorrelation
function [7, 9], and the RTC function [11]:

C3(q,∆φ) =

∫

TL(q)PL(cos(∆φ). (13)

where

TL(q) =
∑

L1L2

G(L10; , L20;L0)IL10
(q)IL20

(q)IL0(q)

(14)
and G is a Gaunt coefficient.
For the purposes of an initial proof of principle, we

simulated these quantities as follows. The relationship
between the azimuthally symmetric cylindrical harmonic
expansion coefficients I0(R, ζl) and the corresponding
spherical harmonic expansion coefficients IL0(q) of the
same 3D intensity distribution is

I0(R, ζl) =
∑

L

IL0(q)PL(ζl/q) (15)
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where q =
√

R2 + ζ2l , and PL is a Legendre function.
Now

I0(R, ζl) =
∑

n

Gn(R, ζl)G
∗

n(R, ζl) (16)

and so is calculable from the atomic coordinates accord-
ing to (2). One may calculate the spherical harmonic
expansion coefficients by inverting the equation

I0(R, ζ) =
∑

L

IL0(q(=
√

R2 + ζ2))PL(ζ/q). (17)

The quantities IL0(q) may then be used to calculate
BL(q) from (4) with the single term M = 0 on the RHS,
and TL(q) from (14).
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FIG. 1: Fiber diffraction pattern of TMV (with intensities on
a logarithmic scale) recovered from simulations of quantities
expected to be measured in an XFEL “diffract and destroy”
experiment from individual viruses in completely random 3D
orientations. The axes are reciprocal-space coordinates in
units of Å−1.

Assuming that BL(q) and TL(q) are the only quantities
known (as from a real XFEL experiment), we recovered
the magnitudes of the (real) spherical harmonic expan-
sion coefficients IL0(q) from (12). From the form of this
equation, it is clear that the magnitudes of the TL(q)’s
will be sensitive to the signs of the IL0(q) [11]. Conse-
quently, these signs may be recovered by optimization of
the TL(q)’s (14). The recovered IL0(q) coefficients were
then used to generate a 3D diffraction volume from (11).
This diffraction volume will have contributions from only
the azimuthally symmetricM=0 terms up to a maximum
value of the scattering vector corresponding to a resolu-
tion of about 12 Å. A slice through this diffraction volume

passing through the origin of reciprocal space and par-
allel to the ζ-axis will be expected to be identical to a
fiber diffraction pattern, and consist of the series of layer
lines, as indeed appears to be the case (Fig. 1).

This is quite a remarkable result. Using true fibers,
the structure of TMV has been determined up to a reso-
lution of 2.9 Å[16]. However, attempts to align particles
by the other means such as the electric fields of powerful
lasers, flow alignment etc. have encountered the obstacle
of the entropic tendency to disorder at any finite tem-
perature [17]. What we have demonstrated here is the
ability to produce a near-perfect fiber diffraction pattern
of TMV up to a resolution of about 12 Å by postpro-
cessing of diffraction patterns from particles completely

randomly oriented in 3D! This opens the way to the use of
fiber diffraction methods for structure solution of parti-
cles prepared in random orientations for e.g. single parti-
cle ”diffract-and-destroy” experiments with an x-ray free
electron laser without the need to form an oriented bun-
dle in the form of a fiber.

The key to this result is that up to about 12 Å reso-
lution, the distribution of scattered intensities of a sin-
gle c-repeat unit of TMV is describable by a spherical
harmonic expansion with angular momentum quantum
number L < 49. However, on the layer planes, the mag-
netic quantum number may only take on possible values
of 0, ± 49, etc. Since the properties of angular momenta
require that M ≤ L, the only permitted value of M is
zero up to this resolution. Up to this resolution there-
fore, the intensity is azimuthally symmetric, exactly as in
fiber diffraction of TMV. What is more, with this choice
of axis, since there is only a single value ofM in the sum-
mation in the RHS of (4), the magnitudes of the IL0(q)
coefficients may be determined directly from the square
roots of the experimentally accessible quantities BL(q, q),
and their signs determined by optimizing the other ex-
perimentally determinable quantities, TL(q) [11]. Con-
sequently, the entire 3D diffraction volume of a single
particle may then be reconstructed from (11). A low res-
olution fiber diffraction pattern is simply a slice through
this volume.

It should be noted that BL(q, q) is an orientationally-
independent quantity (it is a result of calculating the
average of the angular correlations over all measured
diffraction patterns from random particle orientations).
On the other hand, the values ILM (q) of the spherical-
harmonic expansion coefficients of the diffraction volume
do depend of the choice of axes. This means that the
relationship (4) is valid for any choice of ζ-axis orienta-
tion, and allows the freedom of choice of orientation of
this axis for the definition of the expansion coefficients
ILM (q). Hence it is possible to extract the diffraction
volume of a single particle orientation from the angular
correlations of the intensities over a large number of com-
pletely random particle orientations. Consequently, al-
though the quantity BL(q) is determined experimentally
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by the scattering from a large number of completely ran-
domly oriented particles, its value may be determined by
assuming all particles to be perfectly aligned with respect
to an arbitrary orientation. In reconstructing the spher-
ical harmonic expansion coefficients ILM (q) from BL(q)
therefore the expansion coefficients may be defined with
respect to the same ζ−axis, whose direction may be cho-
sen for computational convenience. This is equivalent to
computational alignment! The same principle that has al-
ready been demonstrated [9] in the reconstruction of the
diffraction volume and hence structure of an icosahedral
virus from simulated XFEL diffraction patterns from ran-
dom particle orientations. In that case, the icosahedral
particles’ diffraction volume is oriented with the 5-fold
axis along ζ. In the case of a helical particle, by choos-
ing the ζ-axis parallel to the helix axis, one reconstructs
the diffraction volume of the helix with its axis along
ζ. With this choice of axis, up to a resolution of about
12 Å, or a magnitude of the angular momentum quan-
tum number L of about 48, M=0 is the only permissible
value of the magnetic quantum number. This allows the
determination of the magnitudes and signs of the only
(real) non-zero values of the spherical harmonic expan-
sion coefficients of the diffraction volume in this prefered
orientation.
The ultimate aim is to reconstruct the 3D real-space

structure of the virus. Accordingly, we attempted to re-
cover the 3D real-space structure from the reconstructed
3D diffraction volume by means of an iterative phasing
algorithm [15]. The result is shown in Fig. 2.

FIG. 2: Real-space image of a portion of a tobacco mosaic
virus (TMV) recovered by an iterative phasing algorithm from
an oversampled [14] low-resolution 3D diffraction volume gen-
erated from just the the M = 0 components of the spherical
harmonic expansion coefficients recovered from quantities ex-
pected to be calculated from the ensemble of XFEL diffraction
patterns from random orientations of the virus.

The essential features of the structure of TMV are cor-
rectly reconstructed, such as the tubular shape with a
central bore and the helical grooves on the outer surface

of the virus. Although the image may not appear of quite
12 Å resolution, this limitation must lie in the particular
phasing algorithm used, since the fiber diffraction pat-
tern of TMV is calculable up to this resolution. Indeed,
for the final step of going from recovered fiber diffrac-
tion pattern to a real-space image, a standard method
of fiber diffraction may be used, which is known to be
able to reconstruct a real-space image to the full extent
of the diffraction data, although such methods [2, 18] re-
quire additional information such as diffraction data from
a heavy-atom derivative, or low-resolution information
from e.g. electron microscopy. The advantage remains
over pure electron microscopy methods used for example
to determine the structure of C nanotubes [19], that the
necessity to exactly align the fibers is eliminated.

Of course, since we have demonstrated the ability to
reonstruct a fiber diffraction pattern (Fig. 1) from quan-
tities extractable from data measurable in a “diffract and
destroy” XFEL experiment on particles randomly ori-
ented in 3D, the possibility also exists of structure deter-
mination from this reconstructed fiber diffraction pattern
by standard methods of fiber diffraction (e.g. [18]). As
with the use of complementary information from a heavy
atom derivative or electron microscopy in standard meth-
ods of fiber diffraction, the method proposed here could
be used as a starting point to the determination of a he-
lical structure to higher resolution by standard methods
of fiber diffaction.
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