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The rate of curvature-driven grain growth in polycrystalline materials is well-known to be limited
by interface dissipation. We show analytically and by simulations that, for systems forming modu-
lated phases or non-equilibrium patterns with crystal ordering, growth is limited by bulk dissipation
associated with lattice translation, which dramatically slows down grain coarsening. We also show
that bulk dissipation is reduced by thermal noise and that this reduction leads to faster coarsening
behavior dominated by interface dissipation for high Peierls barrier and high noise. Those results
provide a unified theoretical framework for understanding and modeling polycrystalline pattern
evolution in diverse systems over a broad range of length and time scales.
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Polycrystalline patterns are observed in very diverse
systems including crystalline solids [1], colloidal systems
[2, 3], various spatially modulated phases of macromolec-
ular systems such as diblock copolymers [4, 5], and non-
equilibrium (NE) dissipative structures [6]. When grain
boundaries (GBs) between domains of different crystal
orientation are mobile, those patterns generally coarsen
in time to reduce GB length or area by elimination of
smaller grains. This coarsening behavior has been exten-
sively studied because of its practical importance for en-
gineering polycrystalline materials [7] and its fundamen-
tal relevance for our general understanding of nonequi-
librium ordering phenomena.

The two-dimensional (2D) ordering dynamics of mod-
ulated phases and NE patterns has been investigated the-
oretically [8–16] in the framework of model equations of
the general variational form

p∂2t ψ+α∂tψ = −(−∇2)n
δF
δψ

+η, (p, n = 0 or 1), (1)

where ψ is an order parameter appropriate to each system
that can be globally conserved (n = 1) or non-conserved
(n = 0), and η is a noise uncorrelated in space and time
with a variance determined by the fluctuation-dissipation
relation 〈η(~r, t)η(~r′, t)〉 = 2αT (−∇2)nδ(~r − ~r′)δ(t − t′).
The form (1) insures that the system relaxes to a global
minimum of the Lyapounov functional F corresponding
to the lattice ordered state. Eq. (1) has also emerged
as fruitful computational framework −the phase-field-
crystal (PFC) approach [17, 18]− to model polycrys-
talline materials on diffusive time scales with ψ inter-
preted as the crystal density field. While Eq. (1) has
been traditionally studied for purely relaxational (p = 0)
dynamics [8–17], propagative (p = 1) wave-like dynamics
have also been introduced in the PFC context to mimic
phonon-mediated relaxation of the strain field [18].

Experimental studies of modulated phases [4] and ex-
tensive computational studies of Eq. (1) have shown
that the characteristic grain size of 2D hexagonal lattices

[13–16] grows ∼ tq. The exponent q is typically much
smaller than the q = 1/2 value expected for “normal grain
growth” in polycrystalline materials [19, 20], and depends
on parameters and noise strength [15, 16]. While there
have been theoretical attempts to explain those expo-
nents for roll patterns [9–12], the origin of this sluggish
(low q) coarsening kinetics is still poorly understood for
two-dimensional lattices with crystal-like ordering.

In this letter, we show that the sluggish ordering dy-
namics of 2D crystal lattices results from the subtle effect
of “bulk” dissipation. To highlight the origin of this effect,
consider for simplicity the case of non-conserved dynam-
ics (the same effect is present for conserved dynamics).
For this case, Eq. (1) implies that

d

dt
[F + Ek] = −

ˆ
d~r α(∂tψ)2, (2)

where Ek ≡ p
´
d~r (∂tψ)2/2 is the kinetic energy of

phonon-like modes. Since the relaxation of the elastic
field is fast compared to grain coarsening, it follows that
|dEk/dt| � |dF/dt|. Therefore the left-hand-side of Eq.
(2) ≈ dF/dt, which is the rate of decrease of the to-
tal excess GB free-energy in the polycrystal. For solids,
this excess free-energy is dissipated through GB motion
during grain growth. Importantly, grain growth has also
been shown to be accompanied by grain rotation [21–24].
However, for solids, this rotation does not produce any
dissipation in the grain interior owing to the Galilean in-
variance of Newton’s second law, which governs the mo-
tion of real atoms in a crystal. In contrast, for continuous
lattice patterns, “pseudo atoms” correspond to peaks of
the ψ field, whose evolution is governed by Eq. (1) that
is not Galilean invariant. Hence grain rotation induces a
local lattice translation that makes ∂tψ non-vanishing in
the grain interior, thereby contributing to the dissipation
of the GB free-energy through the right-hand-side (r.h.s)
of Eq. (2). This “bulk” dissipation can influence the rate
of grain growth in addition to interface dissipation as-
sociated with the ψ-dynamics in GB regions. Our main
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Figure 1: Results of embedded grain simulations for ε = 0.12
and T = 0 showing normalized grain area (a) and Rθ/a (b)
versus time for two different initial grain areas and six differ-
ent initial misorientations. Grain rotation is present (absent)
for misorientation less (larger) than ∼ 15o. (c) order param-
eter φ defined by Eq. (7) for the largest area 7o simulation
showing the GB structure, with 〈11〉 (〈10〉) dislocation cores
appearing as elongated (circular) blue patches, and the cor-
responding ψ field inside the square region (inset).

finding is that bulk rather than interface dissipation can
dictate the rate of grain growth for lattice patterns gov-
erned by Eq. (1) in the limit of small Peierls-Nabarro
(PN) barrier to dislocation motion and small noise. We
also demonstrate the existence of a non-trivial cross-over
from bulk- to interface-dominated dissipation with in-
creasing PN barrier and noise strength.

To show this, we first solve analytically the problem of
the shrinkage of an embedded circular grain in a single
crystal matrix for n = 0. In this analysis, we keep p ar-

bitrary to show explicitly that phonon-like modes have a
negligible contribution, so that the p = 0 and p = 1 dy-
namics exhibit similar behaviors. We then validate this
solution and explore the coarsening behavior of multi-
grain structures. We simulate both Eq. (1) and a mod-
ified version of Eq. (1) with minimized bulk dissipation
(MBD). The latter is shown to yield a different coarsening
behavior dominated by interface dissipation representa-
tive of crystalline solids. Furthermore, for concreteness,
we carry out our simulations for p = 1 and n = 0 and use
a PFC form of F =

´
d~r ω, which favors a square-lattice

in 2D with the choice [27, 28]

ω = ψ
[
−ε+ (∇2 + 1)2(∇2 + 2)2

]
ψ/2 +ψ4/4−µψ. (3)

This model was recently shown to produce GBs with a
similar dislocation content as [001] tilt GBs in molec-
ular dynamics (MD) simulations of face-centered-cubic
bi-crystals [29]. In the analogy with a crystal-liquid sys-
tem, F is the grand potential that is equal in the crystal
and liquid (ψ = 0) phases for an equilibrium value of the
chemical potential µ = µE [28], which depends generally
on both ε and noise strength T . We note that T rep-
resents physically an effective temperature in the PFC
model since short-wavelength fluctuations on the lattice
scale are already partly accounted for in the bare form
of F . Here we choose the values µ = −0.90 for ε = 0.12
and µ = −1.69 for ε = 0.5. This choice insures that the
system remains inside the stable solid region for both
zero and finite noise values studied here [31]. Since the
height of the PN barrier scales ∼ exp(−c/ε1/2) where c
is some constant (see, e.g. [12]), the height decreases
rapidly with decreasing ε. For ε = 0.12, this height is
very small so that curvature-driven grain growth occurs
at T = 0, while for ε = 0.5 the barrier is large enough to
pin GBs that only become mobile for finite T .

Embedded grain theory. Consider a circular grain of
radius R(t) and misorientation θ(t) with respect to its
surrounding single crystal matrix. For small initial mis-
orientation θ(0), grain rotation is geometrically neces-
sary under the assumption that the number of disloca-
tions along the GB is conserved, as highlighted by Cahn
and Taylor in the context of solids [22]. Since there are
nd = 2πRθ/b dislocations of Burgers vector magnitude
b, this conservation condition implies that

R(t)θ(t) = R(0)θ(0), (4)

and hence that the embedded circular grain rotates to-
wards larger misorientation as it shrinks. This rotation
can also be interpreted as a consequence of the geomet-
rical coupling between GB motion and a shear stress
[22, 25, 26]. In addition to Eq. (4), we need a dynami-
cal equation to prescribe the dynamics of both R(t) and
θ(t). This equation can be obtained readily by evaluat-
ing each term in the relaxation equation (2) for a cir-
cular grain. The time rate of change of total GB en-



3

ergy is Ḟ = d[2πR(t)γ(θ(t))]/dt where γ(θ) is the en-
ergy per unit length of GB and dot denotes derivative
with respect to time. To evaluate separately the contri-
butions of interface and bulk dissipation, we write the
integral on the r.h.s. of Eq. (2) as the sum

´
=
´
I

+
´
B
,

where the interface contribution
´
I
is evaluated over a

thin annulus comprising the GB (of thickness propor-
tional to the dislocation core radius) and the bulk con-
tribution

´
B
is evaluated over the entire embedded grain

area. Dislocations move radially inward by pure glide at
a velocity Ṙ, and hence |∂tψ| ∼ a−1Ṙ over an area a2
around each dislocation, where a is the lattice spacing.
Therefore, the total interface dissipation

´
I
d~rα(∂tψ)2 =

nda
2α(a−1Ṙ)2/m = α2πRṘ2θ/(mb), wherem is an O(1)

dimensionless prefactor. This yields the expression for
the mobility M(θ) = mb/(αθ) for θ � 1 in agreement
with the Cahn-Taylor prediction for solids [22] recently
validated by MD simulations [26].
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Figure 2: Comparison of theory for the octagonal grain shown
as a black solid (green dashed) line for ε = 0.12 (ε = 0.5), and
simulations of Eq. (1) (symbols); the slopes s2Ka/E0 are
predicted by Eq. 6. The fitted intercept for the green dashed
line represents a finite contribution of interface dissipation
for intermediate noise. Red star symbols are for the modi-
fication of Eq. (1) with minimized bulk dissipation (MBD),
which causes the grain shrinkage rate to become independent
of grain size and misorientation for small misorientation.

Next, to compute the bulk dissipation rate´
B
d~r α(∂tψ)2, we compute the dissipation rate per

unit area of a crystal field in uniform translation
at velocity ~v and then integrate the result over the
entire grain area. In a region in uniform translation,
ψ(~r, t) ≈ ψ0(~r − ~vt), where ψ0(~r) is the equilibrium ψ-
field that minimizes F , and hence ∂tψ = −~v · ~∇ψ0. The
dissipation rate per area of crystal can therefore be writ-
ten in the form αKv2/Au.c. where K ≡

´
u.c.

d~r (v̂ · ~∇ψ0)2

is computed over the area Au.c. of one unit cell (u.c.).
For a square lattice, Au.c. = a2 and K is independent

of the direction of v̂ relative to the crystal axes, and
reduces to K =

´ a
0

´ a
0
dx′dy′(∂x′ψ0)2 where x′ and y′

are the principal crystal axes. Since v = rθ̇ in each
small region of a large rotating grain, where r is the
radial polar coordinate, the total bulk dissipation rate
is obtained by integrating αKv2/Au.c. over the grain
area:

´ R
0

2πrdrαK(rθ̇)2/a2 = απKR4θ̇2/(2a2) = 2αEk.
Combining the above expressions for interface and bulk
dissipation, Eq. (2) becomes

Ṙγ +Rγθ θ̇ = −αRṘ2θ/(mb)− αKR4θ̇2/(4a2), (5)

where we have neglected Ėk which can be shown to give a
negligible higher order contribution. Thus the p = 0 and
p = 1 dynamics in Eq. (1) yield the same grain rotation
dynamics. Finally, approximating the GB energy with
a Read-Shockley (RS) law γ(θ) = E0θ(Ac − ln θ) valid
for small θ, and using the condition R(t)θ(t) = R(0)θ(0)
that nd is conserved, Eq. (5) yields a single dynamical
equation for R(t) that can be analytically solved. Its
solution predicts that the grain area (A = πR2) decreases
linearly in time with a rate Ȧ = dA/dt given by

−a2/(αȦ) = s1a
2/(mbE0) + s2KR(0)θ(0)/E0, (6)

where s1 = 1/(2π) and s2 = 1/(8π), and the first and
second terms on the r.h.s. correspond to interface and
bulk dissipation, respectively. Since b ∼ a and m and
K are constants of order unity, Eq. (6) predicts that the
ratio of bulk to interface dissipation is ∼ R(0)/a� 1, im-
plying that Ȧ is entirely dominated by bulk dissipation,
which holds for any lattice structure.

Embedded grain simulations. To test Eq. (6), we sim-
ulated embedded grains using Eq. (1) with F defined by
Eq. (3). We used a pseudo-spectral method described
in [30] with more details given in [31]. Fig. 1 shows
plots of grain area and Rθ/a versus time together with
a snapshot that highlights the structure of the GB, con-
sisting of dislocations with Burgers vectors described by
the Miller indices 〈11〉 and 〈10〉. Accordingly, the grain is
approximately shaped as an octagon with 4 facets made
up of [11], [1̄1], [11̄], and [1̄1̄] dislocations, and 4 others
with [10], [01], [1̄0], and [01̄] dislocations, respectively.
Fig. 1a shows that Ȧ is constant and depends on both
initial grain size and misorientation, and that Rθ is con-
stant; the number of dislocations is conserved until dislo-
cations annihilate during the final stage of grain collapse.
In Fig. 2, we compare quantitatively Ȧ values extracted
from linear fits of A vs. time plots (before grain collapse)
to the predictions of Eq. (6) extended to an octagonal
grain with two dislocation types: E0 = (E11

0 + E10
0 )/2

and (mb)−1 = [(m10b10)−1 + (m11b11)−1]/2, where s1 =
1/(4
√

2) and s2 = 0.0368 are related to the perimeter and
area of an octagon and E11

0 and E10
0 are extracted from

fits of computed GB free-energies to a RS law [31]. This
comparison shows an excellent quantitative agreement
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Figure 3: Plot of ordering legnth ξS (∼ mean grain size)
vs. time from simulations of Eq. 1 (parameters in legends)
and minimized bulk dissipation with ε = 0.12, α = 8, and
δ = 3.1 10−3 (δ = 6.3 × 10−3) for MBD1 (MBD2); T = 0
when not given in legend. Numbers in parentheses are growth
exponents from straight-line fits at large times (dashed lines).
Inset: orientation field computed using a wavelet transform
of ψ with a color bar ranging from −45o to 45o [31].

for ε = 0.12 and T = 0 for two different α values, confirm-
ing that inertia (p = 1) is unimportant. The comparison
for ε = 0.5 with large PN barrier shows that bulk dissi-
pation is still dominant for intermediate T (T = 0.0216).
The slope of the curve predicted by Eq. (6) fits well
the simulations results, but the curve has a finite inter-
cept at the origin corresponding to a finite contribution
of interface dissipation. This contribution is negligible
for ε = 0.12 where the intercept merges with the origin.
For ε = 0.5 and larger T (T = 0.0576), bulk dissipation
is reduced and the simulation data is no longer fitted by
the theory. Analysis of dislocation dynamics in the sim-
ulations shows that this reduction results from thermally
activated dislocation reactions. Those reactions reduce
the number of dislocations, thereby allowing the grain to
shrink with less rotation and reducing the contribution
of bulk dissipation relative to interface dissipation. Re-
duction of grain rotation by dislocation reaction is also
observed in MD simulations of grain rotation [24].

Grain growth simulations. Next we simulated Eq. (1)
with p = 1 and n = 0 in large systems of 512 × 512
unit cells with periodic boundary conditions. We seeded
in a liquid a large number of small randomly oriented
grains, which crystallize into a very fine grain polycrys-
tal. We then characterized the coarsening of this poly-
crystal by measuring the ordering scale ξS using the half
width δk at half peak of the structure factor S(k, t) =

〈ψ(~k, t)ψ∗(~k, t)〉 (fitted to a squared Lorentzian), where
the angular brackets denote averages over all orientations
of ~k in the same simulation [10, 31]. Plots of ξS ≡ δk−1

vs. time in Fig. 3 for simulations of Eq. (1) with ε = 0.12
and T = 0 yield a small coarsening exponent q ≈ 0.22 as
in previous experimental [4] and computational [13–16]
studies of 2D hexagonal lattices.

To test the hypothesis that this sluggish coarsening ki-
netics results from bulk dissipation, we simulated a mod-
ified MBD version of Eq. (1) where dissipation is mini-
mized in the bulk and localized at GBs. This is achieved
by the substitution α→ αh(φ) in Eq. (1) where

φ(~r) = C

ˆ
d~r′ exp(−|~r − ~r′|2/2ζ2)|∇ψ(~r′)|2 (7)

is a spatially varying order parameter directly analogous
to the conventional phase field for crystal ordering [32].
We choose ζ = a/2 and the normalization constant C
such that φ is unity in ordered regions of the lattice and
decreases below unity in dislocation cores and GBs, as il-
lustrated in Fig. 1c for the embedded grain. The function
h(φ) given in [31] has limits h(1) = δ and h(φ) ∼ O(1)
in ordered and disordered regions, respectively, thereby
allowing us to minimize the ratio of bulk and interface
dissipation by choosing δ � 1. To test the MBD dynam-
ics, we first repeated the single embedded grain simula-
tions. The results in Fig. 2 (red stars) show that the
grain shrinkage rate becomes independent of initial grain
size and misorientation as in MD simulations [24]. This
result is consistent with the theoretical prediction that,
for MBD, the second term on the r.h.s. of Eq. (6) corre-
sponding to bulk dissipation is multiplied by δ and hence
becomes negligible in the limit δ � 1.

Next, we repeated the multi-grain simulations with
MBD dynamics. The results in Fig. 3 show that MBD
yields a larger exponent q ≈ 0.35 than q ≈ 0.22 for stan-
dard PFC dynamics (1), thereby demonstrating that bulk
dissipation significantly slows down the coarsening kinet-
ics even though grain rotation is more constrained in a
complex GB network. This conclusion is further sup-
ported by the finding that grain rotation is more preva-
lent in MBD than standard PFC simulations and by com-
puting the ratio of interface and total dissipation. This
ratio decreases to a small value with standard PFC dy-
namics but remains approximately unity with MBD [31].
Finally, simulations for ε = 0.5 show that the growth
exponent increases markedly with T , as expected from
the reduction of bulk dissipation by dislocation reactions.
More important here than the precise values of the ex-
ponents, which are not exactly constant in time, is the
demonstration of the key role of bulk dissipation in the
ordering dynamics of 2D lattice forming systems.

The present results should be testable experimentally
in a wide range of systems forming modulated phases or
NE patterns with crystal ordering. They also highlight
the necessity of reformulating the PFC dynamics for re-
alistically modeling polycrystalline materials.

This work was supported by US DOE grants DE-
FG02-07ER46400.
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