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1INLN, Université de Nice-Sophia Antipolis, CNRS; 1361 route des Lucioles, 06560 Valbonne, France

2Institut Universitaire de France
3Centre for Quantum Technologies, National University of Singapore; 2 Science Drive 3 Singapore 117542

4Physics Department, University of California, Davis, California 95616, USA
5Department of Physics and Astronomy, Louisiana State University, Bâton Rouge, Louisiana 70803, USA
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The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter.
The parameter regimes at which it might exist, and how it competes with alternate types of order,
such as supersolid order, are still incompletely understood. Using the Stochastic Green Function
(SGF) quantum Monte Carlo (QMC) and the Density Matrix Renormalization Group (DMRG), we
study numerically the ground state phase diagram of the one-dimensional bosonic Hubbard model
(BHM) with contact and near neighbor repulsive interactions. We show that, depending on the
ratio of the near neighbor to contact interactions, this model exhibits charge density waves (CDW),
superfluid (SF), supersolid (SS) and the recently identified Haldane insulating (HI) phases. We
show that the HI exists only at the tip of the unit filling CDW lobe and that there is a stable SS
phase over a very wide range of parameters.

PACS numbers: 03.75.Hh 05.30.Rt 67.85.-d

Since its introduction in 1989 [1], the bosonic
Hubbard model (BHM) has attracted continued interest
due to its very rich ground state phase diagram
especially in the presence of longer range interactions.
Direct experimental relevance was established with the
realization of this model Hamiltonian, with tunable
parameters [2], in systems of ultra-cold bosonic atoms
loaded in optical lattices [3]. In its simplest form, a
single boson species with only contact repulsion, the
system exhibits two phases in the ground state [1], a
superfluid (SF) and an incompressible Mott insulator
(MI) depending on the particle filling and the interaction
strength. Extensive quantum Monte Carlo (QMC)
simulations have established that, when longer range
interactions are included, the supersolid (SS) phase
can form for a wide range of parameters and lattice
geometries in one, two and three dimensions [4–16].
Typically, the SS phase is produced by doping a phase
exhibiting long range charge density order (CDW).

In addition, it was shown that the one-dimensional
extended BHM with next near and/or near neighbor
interactions admits another exotic phase at a filling of one
particle per site; the Haldane insulator (HI) [17, 18]. The
HI is a gapped insulating phase characterized by a highly
non-local order parameter like the Haldane phase [19, 20]
in integer spin chain systems (see below). This gives rise
to several questions. Does the HI exist for other integer
fillings of the system or is it a special property of the unit
filling case? The SS phase found in one dimension [11]
was obtained by doping a CDW phase: Does this phase
also exist for commensurate fillings in one dimension for
parameter choices similar to those in two [21] and three

dimensions [22]? If the SS phase exists for commensurate
fillings, where is it situated in the phase diagram relative
to the CDW, MI and HI phases? The phase diagram
at unit filling for the BHM with contact (U) and near
neighbor (V ) interactions was determined via QMC
[23, 24] and found to have SF, MI and CDW phases
but no SS. Subsequently, the (µ, t) phase diagram of the
extended BHM, for a fixed V/U ratio, was obtained using
Density Matrix Renormalization Group (DMRG) [25],
but showed only evidence for MI, SF and CDW. More
recent work, also based on the DMRG, has found [26]
no SS phase in the (U, V ) plane at unit filling but the
question of other fillings was not addressed. Reference
[26] also found a HI phase (sandwiched between the MI
and CDW phases) which was not present in [23, 24]. As
we shall see below, the HI phase was not found in the
earlier work because the superfluid density in this phase
vanishes very slowly with the system size and the largest
sizes that could be accessed at the time were 64 sites.

Theoretical studies of this system using bosonization
have led to mixed results. The HI was obtained
and characterized with bosonization [18] but consensus
is absent on whether the SS phase exists in this
model. Even though older studies did not specifically
mention it [27] or even argued that it did not
exist [25], more recent studies seem to demonstrate the
presence of the SS phase [28], even without nearest
neighbor interaction [29], for both commensurate and
incommensurate fillings. However, the precise nature
of order and the decays of the relevant correlation
functions are still far from settled. For instance, some
studies predict that the single particle Green function
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FIG. 1: (color online) Shows several quantities for ρ = 1
as functions of t/U with the fixed ratio V/U = 0.75. (a) The
CDW order parameter for L = 64 and ρs for L = 64, 100, 150;
(b) the parity and string order parameters; (c) the neutral and
charge gaps. (a) and (b) were obtained with QMC and (c)
with DMRG. The region between the vertical dashed lines is
the HI. In the HI, ρs → 0 very slowly as L increases while the
string parameter is essentially constant. Note the difference
between the neutral and charge gaps. The gaps are given in
units of the hopping t.

decays exponentially in the SS phase while the density-
density correlation function decays as a power [30]; others
predict that both of these correlation functions decay
as powers [28]. Finally, the universality class of the
transition to the SS phase remains largely unexplored.

In this Letter we answer some of these questions using
the Stochastic Green Function (SGF) QMC algorithm
[31] and the ALPS [32] DMRG code to obtain the phase
diagram of the extended BHM in one dimension,

H = −t
∑

i

(a†iai+1
+ a†i+1

ai ) +
U

2

∑

i

ni (ni − 1)

+V
∑

i

nini+1. (1)

The sum over i extends over the L sites of the lattice,
periodic boundary conditions were used in the QMC
and open conditions with the DMRG. The hopping
parameter, t, is put equal to unity and sets the energy
scale, ai (a†i ) destroys (creates) a boson on site i, ni =

a†iai is the number operator on site i, U and V are
the onsite and near neighbor interaction parameters.
All results presented here were obtained at the fixed
ratio V/U = 3/4 which favors CDW phases over MI at
commensurate fillings when U is large.

Several quantities are needed to characterize the phase

ρs S(π) ∆c ∆n Op(Lmax) Os(Lmax)

MI 0 0 6= 0 = ∆c 6= 0 = 0

CDW 0 6= 0 6= 0 6= 0 6= 0 6= 0

SF 6= 0 0 0 0 0 0

HI 0 0 6= 0 6= 0 0 6= 0

SS 6= 0 6= 0 0 0 6= 0 6= 0

TABLE I: Order parameters characterizing various phases.

diagram. The superfluid density is given by [33],

ρs =
〈W 2〉

2tdβLd−2
, (2)

where W is the winding number of the boson world lines,
d is the dimensionality and β the inverse temperature.
The structure factor, S(k), and momentum distribution,
nk, are

S(k) =
1

L

L−1∑

r=0

eikr〈n0nr〉;nk =

L−1∑

r=0

eikr〈a†0ar〉. (3)

where S(k = π) gives the CDW order parameter.
The charge gap is ∆c(n) = µ(n)−µ(n−1); the chemical

potential is µ(n) = E0(n+1)−E0(n) where E0(n) is the
ground state energy of the system with n particles. The
neutral gap, ∆n, is obtained using DMRG by targeting
the lowest excitation with the same number of bosons.
In both CDW and HI phases, the chemical potentials at
both ends are set to (opposite) large enough values, in
DMRG, such that the ground state degeneracy and the
low energy edge excitations are lifted [17, 25].
For large values of U and V at ρ = 1, a site typically

has nr = 0, 1, 2 particles with higher occupations being
very rare. The system then becomes analogous to an S =
1 spin chain [17] with Sz(i) ≡ δni = ni−ρ. Consequently,
string and parity operators can be defined [17, 18] to
characterize the Haldane Insulating phase,

Os(|i− j|) = 〈δnie
iθ
∑

j

k=i
δnkδnj〉, (4)

Op(|i− j|) = 〈eiθ
∑

j

k=i
δnk〉, (5)

where θ = π for S = 1. The corresponding value of the
order parameter is obtained in the limit |i − j| → ∞; in
practice we take the order parameters to be Os/p(Lmax)
where, in QMC with PBC, Lmax = L/2 and in DMRG,
with OBC, Lmax is the longest distance possible before
edge effects start being felt. For higher integer filling,
ρ = 2, 3 . . ., θ 6= π and has to be determined as
discussed in [34]. Table I shows the order parameters
[37] characterizing the various phases [17, 18]. The gaps,
∆c and ∆n behave in a subtle way in the CDW and HI
phases (see below).
Figure 1 shows the dependence of the order parameters

on t/U for ρ = 1. Figure 1(c) shows that in the CDW
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FIG. 2: (color online) Same as Fig. 1 but at ρ = 2. (a) QMC
simulations show that in the interval between the two vertical
(black) dashed lines there is similtaneous SF and CDW order
and, therefore, a supersolid phase (SS). The vertical (red)
dot-dash line is where the L → ∞ extrapolated neutral (∆n)
and charge (∆c) gaps vanish in DMRG (c). The CDW-SS
transition is between t/U = 0.33 (QMC) and t/U = 0.355
(DMRG). The difference between the two values could be due
to the difference in the boundary conditions, open for DMRG
and periodic for QMC. (c) also shows the L → ∞ extrapolated
CDW order parameter, right (red) triangles, and the Fourier
transform of 〈ni〉〈nj〉, left (black) triangles, obtained with
DMRG to probe the disappearance of CDW order. Both
DMRG and QMC give the SS-SF transition at t/U ≈ 0.425.
Note that, unlike Fig. 1, the charge and neutral gaps (c) are
essentially always the same.

phase ∆c > ∆n and that ∆n = 0, ∆c 6= 0 at the CDW-
HI transition. The HI-SF transition is signaled by ∆c =
∆n → 0 [17, 18]. Finite size scaling of the DMRG results
show that ∆n → 0 at t/U ≈ 0.32 ± 0.01. Therefore,
according to table I, the system is in the CDW phase
for t/U ≤ 0.22 and in the SF phase for t/U ≥ 0.32.
For 0.22 ≤ t/U ≤ 0.32 (between the two vertical dashed
lines), the system is in the HI phase with ρs → 0 as the
size increases. Note how slowly ρs → 0 with increasing L
and how insensitive Os is to the finite size. This makes
Os a more reliable indicator at moderate system sizes.
Our CDW-HI transition at t/U = 0.22 agrees very well
with Fig. 1 in [26]. However, the value we obtain for the
HI-SF transition, t/U ≈ 0.32 does not agree with the
schematic dashed line in that figure.

The behavior at ρ = 1 may be understood by making
the analogy with S = 1 spin chains. The question
arises then as to whether such an analogy between this
extended BHM at ρ = 2, 3 . . . and S = 2, 3 . . . spin chains
is valid and also leads to HI phases. Figure 2 shows for
ρ = 2 qualitatively different behavior compared to Fig. 1.

While for low t/U both cases exhibit CDW phases,
the behavior of ∆c and ∆n, calculated with DMRG,
is strikingly different as seen in Fig. 2(c): For ρ = 2,
∆c = ∆n and finite size scaling shows that they vanish
together at t/U ≈ 0.36, there is no HI in this case. This is
consistent with the absence of the Haldane phase in S = 2
spin chains [35]. Nonetheless, for this filling, the system
does exhibit another salient feature: Indeed, figure 2(a)
and (c) show from both QMC and DMRG that when
the gaps vanish, S(π) remains non-zero while ρs also
takes a non-zero value. S(π) and ρs both remain non-
zero for 0.33 ≤ t/U ≤ 0.425 indicating the presence of a
supersolid phase. The CDW-SS transition is estimated
to be at t/U ≈ 0.33 from QMC and t/U ≈ 0.36 from
DMRG while both DMRG and QMC give t/U ≈ 0.425
for the SS-SF transition. In Fig. 3 we show nk/L and
S(k) in the SS phase at t/U = 0.35 and L = 64, 100, 128.
We see that while nk/L → 0 (see center peak, k = 0) as
expected (since there is no condensate in one dimension),
the peaks in S(k) do not depend on L, indicating long
range CDW order. This behavior is also confirmed by
a finite-size scaling analysis of the DMRG results for
sizes L = 64, 96, 128, 160. For the three phases (CDW,
SS and SF), the CDW order parameter S(π) is found
to scale as S0 + S1/L + S2/L

2, whereas n0/L is always
found to decay as a power law n1/L

α. We find that, in
both SS and SF phases, the parameter α is less than
0.25, in agreement with a Luttinger liquid description of
the system [17, 18, 27, 28]. This scaling law and the
insensitivity of ρs to L, Fig. 2(a), confirm that this is
indeed the SS phase. This surprising appearance of the
SS phase at commensurate filling has also been observed
in two and three dimensions [21, 22]. Furthermore, we

find that the Green function, G(r) = 〈a†ra0〉, decays as a
power in the SS phase with exponent≈ 0.5 at t/U = 0.34.
For the present value of V/U , this behavior at ρ = 2

is repeated at ρ = 3 (and presumably at higher integer
fillings): As t/U is increased, the system goes from CDW
to SS to SF without exhibiting any HI phases. It appears,
therefore, that, at least for V/U = 3/4, the analogy
between integer spin chains and this extended BHM at
integer fillings applies only at ρ = 1.
The phase diagram in the (t/U, µ/U) plane for V/U =

0.75 is mapped by calculating the charge gaps at
commensurate fillings, multiples of L/2, and by making
plots like Figs. 1, 2. The results, Fig. 4, were obtained
using QMC (all symbols) and DMRG (black lines near
lobe tips) and agree qualitatively with [36]. The end
points of the lobes are obtained by studying the finite
size dependence of ∆n using DMRG.
Several comments are in order. The ρ = 1/2 lobe

is surrounded almost entirely by SF except for a small
region of SS squeezed between it and the ρ = 1 lobe. The
fact that in the extended BHM a SS does not exist when
the ρ = 1/2 CDW phase is doped with holes, but does
when it is doped with particles, was already addressed
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in [11]. The part of ρ = 1 lobe sticking out of the SS
phase is the HI phase. No other CDW lobe behaves this
way. The ρ = 3/2 lobe terminates right at the boundary
with the SF: To within the resolution of our simulations,
the transition from the ρ = 3/2 CDW lobe goes directly

into the SF without passing through the SS. This peculiar
behavior for ρ = 3/2 was also observed for different values
of V/U ranging from 0.65 to 1: The SS layer between the
CDW and SF phases, if present, is too thin to observe
for the considered system sizes.

In this letter we examined the phase diagram of the
extended BHM. Contrary to expectation, we found that
this model at integer fillings does not always behave
analogously to integer spin chains. In particular, only for
ρ = 1 and at small t/U does this happen and the system
exhibits CDW, HI and SF phases. In the CDW phase
at this filling, ∆c > ∆n. At all other integer fillings,
we found the HI phase to be absent and in its place
a supersolid phase which indicates that the system at
these fillings may not behave like an integer spin chain.
Furthermore, for all CDW phases, except the one at
ρ = 1, we found that ∆n = ∆c and that, unlike the
ρ = 1 case, both gaps vanish together as the CDW phase
gives way to SS or SF. It is possible that, for a different
V/U ratio, the SS-SF boundary will shift and cut the
ρ = 3 lobe (as it does in Fig. 4 with the ρ = 1 lobe)
resulting in a HI phase. If this happens, it could mean
there are two types of ρ = 3 CDW phases, one in which
the neutral and charge gaps are always the same (what
we find here) and another CDW phase in which ∆c > ∆n

as is the case for the ρ = 1 CDW. We have also shown
that the single particle Green function decays as a power
law in the SS phase.
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