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Abstract 

 It is found that the Langmuir-Blodgett (LB) solutions for the space charge limited 

current density, for both cylindrical and spherical diodes, may be approximated by 
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ε= over a wide range of parameters, where Ec is the surface electric 

field on the cathode of the vacuum diode and D is the anode-cathode spacing. This 

dependence is valid whether Ra/Rc is greater than or less than unity, where Ra and Rc is 

respectively the anode and cathode radius.  Minor empirical corrections to the above 

scaling yield fitting formulas that are accurate to within 5 percent for 3×10-5 < Rc/Ra < 

500. An explanation of this scaling is given. An accurate transit time model yields the LB 

solutions even in the Coulomb blockade regime for a nanogap, where the electron 

number may be in the single digits, and the transit time frequency is in the THz range. 
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 Space-charge-limited (SCL) electron flow describes the maximum current density 

allowed for steady-state electron beam transport across a diode. It is central to the studies 

of high current diodes, high power microwave sources, vacuum microelectronics, and 

sheath physics in plasma processing, etc. It is also of interest to the contemporary studies 

of nanogap and nanodiode. For a one-dimensional (1D) planar diode with gap spacing D  

and gap voltage gV , the maximum steady-state current density is governed by the 1D 

Child-Langmuir (CL) law, [1, 2]  
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where e  and m are, respectively, the charge and mass of the electron, and 0ε  is the 

permittivity of free space.  There are extensions to this 1D classical CL law to multi-

dimensions [3-8], to the quantum regime [9-13], and to ultrafast processes [14, 15].  

There are also related studies on the cylindrical diode [16, 17], THz sources [18], time 

dependent models [19-21], Coulomb blockade [22], and 2D electromagnetic effects [23]. 

 The CL current may be simply approximated by TQI /= , where Q = CVg is the 

total bound surface charge on the cathode, C is the diode capacitance and T  is the transit 

time of an electron to cross the gap subjected only to the vacuum field [24].  This 

capacitance model, or transit time model, yields a current density also given by Eq. (1) 

for the planar gap, except the numerical factor 4/9 is replaced by 1/2, thus committing an 

error of only 12.5 percent [24]. That is, we need to multiply the current density obtained 

from the transit time model by the numerical factor 8/9 to obtain the correct CL law in a 

planar gap.  Because of its simplicity and accuracy, this capacitance or transit time model 
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is of great utility to study a short pulse diode [14], and more recently the quantum regime 

[13].       

 It is tempting to apply the transit time model to the cylindrical and spherical 

geometries that were treated by Langmuir and Blodgett (LB) [25, 26].  LB obtained the 

space-charge-limited current density on the cathode of a cylindrical diode [25],  
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where β  is a function of /a cR R which is tabulated numerically, and Ra and Rc are the 

radius of anode and cathode, respectively. For the spherical diode, LB expressed β2 as 

(Rc/Ra)α2 and tabulated α  numerically as a function of /a cR R [26].  Figures 1 and 2 show, 

respectively, the LB solution [Eq. (2)] for the cylindrical and spherical diode, over a wide 

range of Rc/Ra (3×10-5 < Rc/Ra < 500). In these figures, we set Vg = 1 V, and the inner 

radius of the diode at 1 cm, whether it be the anode or cathode radius.  It is clear from Eq. 

(2) that, once the gap voltage and the inner radius are fixed, JLB depends only on the 

radius ratio Rc/Ra; and JLB at other values of gap voltage and inner radius may be obtained 

accordingly. 

The LB solutions are not easy to obtain, and it is highly desirable to derive an 

accurate approximation with an adequate physical picture describing their underlying 

scalings. With the emergence of nano-particles and nano-tubes, scaling laws in these 

geometries would be of interest.  To our knowledge, there is no simple analytical 

approximation for the LB solution (2), except for a recent model [17] that approximately 

solved the Poisson equation for a cylindrical diode.  We shall comment on Ref. [17] later 

in this paper. 



 

 5

 

 Since the transit time model depends only on the vacuum field solution in the 

diode, we summarize the magnitude of the vacuum electric field E(r) and its potential 

function V(r) in the cylindrical and spherical diode,   

 

( ) / , ( ) ( / ) , ( / ) ,  cylindricalC c C c c g C c a cE r E R r V r E R n r R V E R n R R= = =    (3)                

2( ) ( / ) , ( ) / 1 , / ,  sphericalC c C c c g C c aE r E R r V r E R R r V E R D R= = − =                (4) 

 

whether Rc>Ra or Rc<Ra.  In Eqs. (3) and (4), a cD R R= −  is the gap separation, and the 

last expressions give the relation between the gap voltage Vg and the magnitude of the 

vacuum electric field Ec on the cathode surface.  In the planar limit, both Eqs. (3) and (4) 

give Vg = Ec × D, whereas the LB law, Eq. (2), reduces to the CL law, Eq. (1).   

In the transit time model [24], an electron is subjected to the vacuum fields, Eqs. 

(3) and (4), and the time of flight of an electron across the gap (T) is given by, 
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c c

R R

R R

dr m drT
v r e V r

= =∫ ∫  ,     (5)            

 

where V(r)  is given by Eq. (3) or Eq. (4).  In writing Eq. (5), we have used the energy 

conservation relation, mv2/2 = eV.  The transit time model then yields, for both cylindrical 

and spherical diodes, 
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because the surface charge density on the cathode of a vacuum diode is equal to ε0Ec by  

Gauss’ law.  

 The transit-time model, Eq. (6), is presented in Figs. 1 and 2 to compare with the 

exact LB solutions, Eq. (2).  The percentage error in the transit-time model is shown by 

the dash-dot curves in Figs. 1 and 2.  Over much of the ranges of Ra/Rc that were 

considered by LB, these percentage errors greatly exceed the 12.5 percent error that is 

incurred in the transit-time model for the planar diode [24].  

 The poor agreement between the transit time model and the exact LB solutions for 

the cylindrical and spherical diodes, which was also noted independently by Carter [27], 

prompted us to look for a more accurate approximation to the LB solutions, Eq. (2).  We 

find that, over a fairly large range of Rc/Ra, the LB solutions may be approximated by 
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where Ec is the cathode surface electric field of a vacuum diode that is given by Eqs. (3) 

and (4) and D is the gap spacing, irrespective of whether the cathode is inside or outside 

the anode. Note the very different new scaling, Eq. (7), from Eq. (1). Note also that Eq. (7) 

becomes the exact CL solution, Eq. (1), in a planar cathode, for which Ec = Vg/D. 

 The approximate solution, Eq. (7), is also presented in Figs. 1 and 2.  Its 

percentage error in comparison with the exact LB model, Eq. (2), is shown by the dash 
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curves in Figs. 1 and 2. These figures show that Eq. (7) is accurate to within 30 percent, 

for 0.1<Rc/Ra<500, whether the diode is cylindrical or spherical. It is far more accurate 

than the transit time model, Eq. (6), and over a much wider range of Rc/Ra. 

 Before we give a physical interpretation of Eq. (7), we present an empirical 

correction to Eq. (7) that fits the exact LB solution over the large ranges of Rc/Ra 

considered by LB [25, 26],   
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Here, the correction factor F within the range 3×10-5 < Rc/Ra < 500 is given, for a 

cylindrical diode, by   
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and, for a spherical diode, by
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where s = ln [ln (1+ Rc/Ra)] and so = ln[ln(2)]. Note that F = 0 when Rc/Ra = 1, as 

expected . 

The improved approximate solution, Eq. (8), is also presented in Figs. 1 and 2.  Its 

percentage errors in comparison with the exact LB model, Eq. (2), are shown by the thin- 

solid curves in Figs. 1 and 2. These figures show that Eq. (8) is accurate to within 5 

percent for 3×10-5 < Rc/Ra < 500, whether the diode is cylindrical or spherical. Note from 
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Figs. 1 and 2 that, over this range of Rc/Ra, the LB solution varies over many orders of 

magnitude.   

The value of the correction factor F in Eq. (8) is small compared with unity when 

the cathode is on the outside. That is, Eq. (7) provides the dominant scaling if the cathode 

is closer to the planar geometry relative to the anode surface.  On the other hand, if the 

cathode is inside and the anode is outside at a large distance (Rc/Ra << 1), the cathode 

surface is poorly approximated by a planar surface and the correction factor F is of order 

unity or larger.  Thus, the dominant scaling, Eq. (7), may be deduced by concentrating at 

the close proximity of the cathode surface, where the local curvature effects of the 

cathode can be neglected, and the anode would play a secondary role.   

To qualitatively derive Eq. (7), consider a sheet of charge leaving the cathode of a 

vacuum diode.  If all the bound charge on the cathode leaves then naturally the electric 

field directly in front of the cathode becomes zero, and the space-charge-limited 

condition applies.  This charge sheet will then be accelerated by the vacuum field, Ec, that 

is set up by the anode voltage, at least initially.  Applying the transit time argument to 

this charge sheet, as we did in our earlier paper on a charge sheet [14], we note that the 

major portion of the transit time is spent in the immediate neighborhood of the cathode 

surface, where the electrostatic potential may then be approximated by,

( ) ( )c cV r E r R≅ − . Using this V(r) in Eq. (5), we obtain the approximate transit time,

1/ 22( / 2 )app cT mD eE= .  Using this approximate transit time in Eq. (6), we obtain the 

approximate current density, 0(8 / 9) /app c appJ E Tε= , which is Eq. (7).  The factor of (8/9) 

is inserted here so that the transit time formulation is identical to the CL law, Eq. (1), in 

the limit of a planar diode [24]. The scaling law, Eq. (7), when applied to the cylindrical 
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diode, is the same as the approximate formula published by Chen et al. [17] who also 

examined the region close the cathode surface.  Chen did not consider the spherical diode, 

nor did he write his approximate solution in the general form of Eq. (7).  In fact, in his 

derivation [17], there was the ambiguity in the replacement of the differential distance 

(Δr) with the gap separation D when he derived his Eq. (16) from his Eq. (15). 

The use of the vacuum field ignores the space charge effect that is empirically 

modeled by the correction factor F in Eq. (8).  To correctly include the space charge 

effect in the transit time model, we inject a single electron (in the form of an 

infinitesimally thin cylindrical or spherical shell) into the diode, one at a time [22].  At 

time t = 0, there are N electrons located on the cathode, ready to be injected into the gap, 

and the order of injection is labeled by n = 1, 2, …, N.  An electron (shell) is injected into 

the gap only if the total electric field acting on it would initiate an acceleration toward the 

anode.  For the first electron to be injected, the imposed gap voltage must exceed a 

threshold voltage, Vth = e/2C, where C is the capacitance in the cylindrical or spherical 

diode.  (This threshold voltage leads to Coulomb blockade in the single-electron regime.)  

The radial position of the n-th electron shell, denoted as rn(t), is computed from the total 

force acting on it.  The Ramo-Shockley theorem [28,29] yields the instantaneous current 

through the diode, I(t) = dq(t)/dt, where q(t) is the induced charge q(t) on the capacitor. 

For a cylindrical diode with Rc<Ra, q(t) is given in terms of rn(t) by

1
( ) [ / ( / )] [ ( ) / ]

N

g a c n c
n

q t CV e n R R n r t R
=

= + ∑ . The time-average current for the N injected 

electrons is equal to / NI eN t< >= , where tN is the total time measured from the first 

electron n = 1 when it is injected from the cathode and the time when the N-th electron 

arrives at the anode.  
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 The current density on the cathode, calculated from / NI eN t< >= is also 

presented in Figs. 1 and 2, designated as “single electron capacitor model” (SECM).  Its 

percentage errors in comparison with the exact LB model, Eq. (2), are shown by the 

dotted curves in Figs. 1 and 2. These figures show that SECM is accurate to within 10 

percent in the entire studied range of Rc/Ra, an acceptable result in these particle-in-cell 

like simulations. 

We shall next show that the LB law also applies to the Coulomb blockade regime, 

i.e., to low numbers of N.  In Fig. 3, we show the normalized <I(t)> relative to the LB 

value (solid line) for Rc = 100 nm, D = Ra – Rc = 100 nm and N = 50 with Ec / Eth = 1.02 

to 3.5.  The higher than LB value shown in the range of 1 < Ec / Eth < 2, due to the 

Coulomb blockade effect [22], was recently confirmed by Griswold et al. [20] in their 

particle-in-cell simulation.   

 

The insets in Fig. 3 show the temporal evolution for the two cases, Ec/ Eth=1.02 at 

N = 10, and Ec/ Eth=3 at N = 20. Note that for Ec/ Eth= 1.02, there is only one electron 

transported through the gap within one transit time, T [cf. Eq. (5)]. The subsequent 

electron will only be injected into the gap while the prior electron nearly arrives at the 

anode. For Ec/ Eth= 3, there are more than one electron (between 0.5 and 1.5) per transit 

time for which I(t) is nonzero. Note that the inverse of the transit time shown in Fig. 3 

corresponds to a frequency range of 0.1 to 1.5 THz for D = 100 nm from Ec/ Eth = 1.02 to 

4.  The space charge effect will in general increase the vacuum transit time by 40% or 

more. 
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This paper presents semi-empirical formulas which provide an excellent 

approximation to the LB solutions for cylindrical and spherical diodes, essentially for the 

entire range of Rc/Ra that is of practical significance.  The dominant dependence is given 

by Eq. (7), which depends on the vacuum electric field on the cathode surface and is 

therefore quite different from the well-known Child-Langmuir’s Vg
3/2/D2 scaling given by 

Eq. (1). This simple dependence given in Eq. (7) was qualitatively derived by focusing on 

the approximate transit time of an electron sheet, which is spent mostly in the immediate 

vicinity of the cathode.  This dominance of the vacuum field in the immediate vicinity of 

the cathode surface may have some implication in the contemporary development of 

electron gun codes, where modeling of electron emission in the first numerical grid 

proves most critical [30]. Corrections in the transit time from the effects of space charge 

are included, down to the Coulomb blockade regime where electrons numbered in the 

single digits are present in the diode.   

The interesting connections between nano-particles, nano-cavities, Coulomb 

blockade, and the THz regime, remain to be explored. This model might be extended to 

the quantum regime [9, 10, 31], whose quantum CL law was recently used to study the 

charge transfer plasmons between two nearly touching metallic nano-particles [32]. The 

proposed scaling might be useful to other space charge dominated systems, such as 

optical field emission at high field [33], organic semiconductors [34], metal-molecule-

metal junction [35], nanowires [36] and compact high power THz radiation source [37]. 
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Figure Captions 
 
 
FIG. 1 (color online): Comparison between the Langmuir-Blodgett (LB) law, Eq. (2), 

(solid line), and its various approximations for a cylindrical diode over a wide range of 

Rc/Ra. The inner radius either Rc or Ra is 1 cm. The applied voltage is Vg = 1 V. Symbols 

represent the approximate expressions: crosses for Eq. (6), the transit time model; squares 

for Eq. (7); circles for Eq. (8); and triangles for the single electron capacitor model 

(SECM).  Also plotted is the error in the approximate formulas compared with the LB 

law. 

 

FIG. 2 (color online): Same as in Fig. 1, except for a spherical diode. 

 

FIG. 3: Normalized time-average current from the single electron capacitor model as a 

function of normalized electric field at cathode Ec/Eth for a cylindrical diode of Rc = 100 

nm, and gap spacing D = Ra – Rc = 100 nm. The insets show the time-dependent current 

I(t) [relative to the LB solution] for Ec/Eth = 1.02 at N = 10 and Ec/Eth = 3 at N = 20. 
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