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A mechanism for turbulent acceleration of parallel rotation is discovered using gyrokinetic theory.
This new turbulent acceleration term cannot be written as a divergence of parallel Reynolds stress.
Therefore, turbulent acceleration acts as a local source/sink of parallel rotation. The physics of
turbulent acceleration is intrinsically different from the Reynolds stress. For symmetry breaking by
positive intensity gradient, a positive turbulent acceleration, i.e., co-current rotation is predicted.
The turbulent acceleration is independent of mean rotation and mean rotation gradient, and so
constitutes a new candidate for the origin of spontaneous rotation. A quasilinear estimate for ion
temperature gradient turbulence shows that the turbulent acceleration of parallel rotation is explic-
itly linked to the ion temperature gradient scale length and temperature ratio Ti0/Te0. Methods
for testing the effects of turbulent parallel acceleraton by gyrokinetic simulation and experiment are
proposed.

Problems of spontaneous flow generation, spin-up
and formation of differential rotation are ubiquitous in
physics. Examples of these include, but are not limited
to: the origin of the solar differential rotation[1], the for-
mation of the atmospheric jet stream[2], the mechanism
of spin up of a stratified fluid in a container[3], the for-
mation of the solar tachocline[4], and the origin of in-
trinsic rotation in tokamak plasmas[5]. Many instances
of spontaneous flow generation occur in a state of eddy
or wave turbulence, and thus qualify as problems in the
self-organization of flow patterns in turbulence[6]. This
type of problem has considerable overlap with the classic
paradigm of the turbulent magnetic dynamo[7]. Theoret-
ical approaches to the question of flow self-organization
are usually based on mean field theory methods. Exam-
ples include the anisotropic kinetic Alpha effect[8] and
the closely related Lambda effect[9], both derived from
mean field hydrodynamics.

Spontaneous (or, intrinsic) plasma rotation is an ex-
ample of a spin-up process and is of great interest in
magnetic fusion[10]. Plasma rotation is thought to play
an important role in stabilizing macroscopic magnetohy-
drodynamic (MHD) instabilities, such as resistive wall
modes[11] and in reducing or regulating microturbu-
lence and the associated losses. Intrinsic rotation is
particularly important for ITER, which cannot be ad-
equately penetrated by conventional neutral beam injec-
tion (NBI), and so cannot achieve sufficient NBI-driven
rotation. Realization of this has driven intensive research
in spontaneous rotation in the MFE community in re-
cent years[12, 13]. The associated theoretical research
has also focused on mean field approaches to calculat-
ing the parallel rotation profile by Reynolds stress mod-
elling, specialized to the complex geometry of tokamak
plasmas[14]. Interestingly, just as the solar differential
rotation is thought to arise from heat flux driven convec-
tive turbulence in a rotating system, spontaneous toka-

mak rotation is thought to arise from heat flux driven
drift wave turbulence in a helical magnetic field[15].
In this paper, we propose a new mechanism for the

origin of spontaneous rotation in tokamaks. This mech-
anism is turbulent acceleration, and arises from the par-
tially acoustic character of drift-ion temperature gradient
(ITG) turbulence. This mechanism does not arise from a
Reynolds stress or from momentum transport, and thus
has no antecedent in previous work on the mean field
theory of rotation or flow generation.
Momentum transport can influence plasma rotation.

The general parallel momentum transport equation per
ion mass can be written as

∂
〈

nU‖

〉

∂t
+∇ · Γr,‖ = M‖, (1)

where Γr,‖ is the radial flux of parallel momentum,
and M‖ is the turbulent momentum source/sink. The
basic form of the momentum flux is given by Γ‖ =

〈n〉〈ṽrŨ‖〉 + 〈ṽrñ〉〈U‖〉 + 〈ṽrñŨ‖〉[16]. Here, the parallel

Reynolds stress is Πr,|| = 〈ṽrŨ‖〉, including diffusion, ve-
locity pinch[17] and residual stress, ΠRes

r,‖ , which has been

intensively investigated[14]. In particular, the residual
stress is one component of the parallel Reynolds stress
which is not proportional to either flow or flow gradient.
It is thought to be the origin of intrinsic torque, since it
contributes a term which is proportional to ∇ · ΠRes

r,‖ to
the parallel mean flow equation. This term contributes
an intrinsic torque −∇ · ΠRes

r,‖ , which can accelerate the
plasma.
Although the most natural quantity for theoretical

study is toroidal angular momentum density, the quan-
tity measured and estimated from experimental observa-
tion is the toroidal ion velocity Uφ. The magnitude of
Uφ can be approximated by U‖ for tokamaks, since the
toroidal field is much lager than the poloidal field. To
explicitly link theoretical results to experimental obser-
vations, it is more convenient to investigate the evolution
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equation of parallel velocity rather than that of parallel
momentum density. In general, the mean parallel veloc-
ity evolution equation can be written as

∂
〈

U‖

〉

∂t
+∇ · Πr,‖ = a‖, (2)

where Πr,‖ is the parallel Reynolds stress, and a‖ is the
turbulent acceleration. In this work, we identify a tur-
bulent acceleration term which cannot be written as a
divergence of a Reynolds stress. It enters the RHS of
the parallel rotation equation, and follows from gyroki-
netic theory. The turbulent acceleration significantly af-
fects parallel rotation, but its physics is fundamentally
different from that of the residual stress. The residual
stress is one component of the parallel Reynolds stress,
so it enters into the rotation equation via its divergence,
while turbulent acceleration is a local source/sink. We
note that this difference is somewhat analogues to the
difference between the turbulent energy pinch[18] (one
component of the heat flux) and turbulent heating[19].
Just as the pinch and the turbulent heating, the turbu-
lent acceleration and the turbulent residual stress also
co-exist and both are relevant to spontaneous parallel ro-
tation. Therefore, investigation of the parallel turbulent
acceleration is meaningful as well as potentially impor-
tant.
We start from the nonlinear electrostatic gyrokinetic

equation, in the continuity form[20]

∂

∂t
(FB∗) +∇ ·

(

dR

dt
FB∗

)

+
∂

∂v‖

(

dv‖

dt
FB∗

)

= 0, (3)

for which gyrocenter equations of motion are

dR

dt
= v‖b̂+

c

eB∗
b̂×

(

e∇〈〈δφ〉〉 + µ∇B +miv
2
‖b̂ · ∇b̂

)

,

(4)
and

dv‖
dt

= −
B

∗

miB∗
· (e∇〈〈δφ〉〉 + µ∇B) . (5)

Here, F = F (R, µ, v‖, t) is the gyrocenter distribution
function, µ is the gyrocenter magnetic moment, B∗ =
B+v‖∇× b̂, B∗ = b̂ ·B∗ is the Jacobian of the transfor-
mation from the particle phase space to the gyrocenter
phase space, and 〈〈· · ·〉〉 denotes gyroaveraging.
By taking the moments of the nonlinear gyrokinetic

equation, we obtain the equation for gyrocenter density,
n ≡ (2π/mi)

∫

dµdv‖FB∗,

∂

∂t
n+∇ ·

[(

U‖b̂+ vE×B + vdκ + vd∇

)

n
]

= 0, (6)

and the equation for gyrocenter parallel momentum per
ion mass, nU‖ ≡ (2π/mi)

∫

dµdv‖FB∗v‖,

∂

∂t

(

nU‖

)

+∇ ·

[

Pi

mi
b̂+ (vE×B + 3vdκ + vd∇)nU‖

]

= −

[

e

mi
b̂ · ∇δφ+

c

B
b̂× (b̂ · ∇b̂) · ∇δφU‖

]

n. (7)

Here, a long wavelength approximation k2⊥ρ
2
i ≪

1 is used, Pi = 2π
∫

dµdv‖FB∗
(

v‖ − U‖

)2
=

(2π/mi)
∫

dµdv‖FB∗µB is the ion pressure, vE×B =

cb̂ × ∇δφ/B is the fluctuating E×B drift velocity,

vdκ = cTi/ (eB) b̂×
(

b̂ · ∇b̂

)

is the magnetic curvature

drift velocity, and vd∇ = cTi/
(

eB2
)

b̂×∇B is the mag-
netic gradient drift velocity. By summing Eq. (7) over all
species and using the quasi-neutrality equation, a total
momentum conservation equation can be obtained. We
do not present it in this work, since gyrokinetic momen-
tum conservation has already been discussed in detail
in several recent works[21, 22]. On one hand, the off-
diagonal component of the electric part of the Maxwell
stress tensor, ΠE

r,‖ ∝ ẼrẼ‖, coming from the polarization

density[21], can easily be recovered. It plays a similar
role to the usual residual stress, which also enters the to-
tal momentum equation, via its divergence. On the other
hand, the time variation of toroidal momentum density
due to E×B drifts [22] should be absent here, because
the parallel component of E×B vanishes. The terms
on the RHS of Eq. (7) are consistent with the turbu-
lent toroidal -rather than parallel- momentum source in
Ref.[23]. This comes from the parallel electric field, along
with the effective magnetic field B

∗/B∗. It should be
noted that spontaneous rotation does not contradict mo-
mentum conservation. The first is mainly carried by ions,
while the second follows from the sum over the momenta
of all species and the field momentum.

To obtain a more experimentally relevant quantity, the
focus of this work is parallel ion rotation velocity, but
not parallel momentum conservation or the ion parallel
momentum. We subtract Eq. (6) from Eq. (7), and so
obtain the ion parallel flow velocity equation

∂

∂t
U‖ +∇ ·

[

(vE×B + 4vd∇)U‖

]

= −

[

2vd∇ ·
∇n

n
−

e

Ti
vd∇ · ∇δφ− 2vd∇ ·

∇Ti

Ti

]

U‖

−
1

mi
b̂ ·

(

e∇δφ+
1

n
∇Pi

)

. (8)

In low-β plasmas, b̂ ×
(

b̂ · ∇b̂

)

≃ (1/B)b̂ × ∇B, so

the magnetic curvature drift can be approximated as
the magnetic gradient drift, i.e., vdκ ≃ vd∇. Note that
the drift velocities are compressible in toroidal geometry.
∇·vE×B ≃ 2(e/Ti)vd∇ ·∇δφ and∇·vd∇ = vd∇ ·(∇Ti)/Ti

are used when deriving the preceding equation. The par-
allel (toroidal) velocity evolution equation was also stud-
ied in [24, 25] from reduced MHD equations and Bragin-
ski fluid equations, respectively. However, ion pressure
gradient along the torodial direction was ignored in [25].
Both these works focused on magnetic geometric effects
on rotation, which is different from the emphasis of our
work. In particular, the key effect of our study is not a
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toroidal effect, but rather is related to parallel pressure
gradients (i.e. accoustics).
The mean parallel velocity equation can be derived by

taking a flux surface average of Eq. (8), i.e.,

∂

∂t
〈U‖〉+∇ · Πr,‖ = a‖. (9)

As mentioned before, Πr,‖ is the parallel Reynolds stress,
which has been intensively studied in previous work. In
this work, we focus on the RHS of Eq. (9), a‖, the parallel
turbulent acceleration. It can be written as

a‖ =
1

min0

〈

δnb̂ · ∇δTi

〉

− 2

〈

δTi

Ti
vd∇ · ∇

δn

n0

〉

〈

U‖

〉

+

〈

δU‖vd∇ · ∇

(

eδφ

Ti
− 2

δn

n0
− 2

δTi

Ti

)〉

. (10)

Note that this turbulent acceleration term cannot be
written as a divergence of a parallel Reynolds stress! It
plays the role of local source/sink of parallel rotation,
and so is significant for parallel rotation. In particu-
lar, the first term in the turbulent acceleration is related
to gyrocenter density fluctuations and ion temperature
fluctuations, but is independent of the parallel velocity.
Therefore, it can provide a net drive for spontaneous
parallel rotation without any external momentum input.
However, the physics is fundamentally different from the
intrinsic torque induced by residual stress which enters
the parallel rotation equation via the term ∼ ∇ · ΠRes

r,‖ .
We also note that the first term results from the parallel
ion pressure gradient, and so is related to ion acoustic
dynamics. The origin of this turbulent acceleration is
different from that of the turbulent momentum source in
Ref. [23], which resulted from the toroidal electric field.
The first term always exists, whether the geometry is
toroidal or cylindrical. This is different from the toroidal
effects discussed in [24, 25]. However, the other two terms
come from the correction to the parallel direction along
the background magnetic field, due to toroidal geometry
effects. These are subdominant to the first term. Thus,
we focus only on the ion acoustic related turbulent accel-
eration in the following discussion.
We present a quasilinear estimation of the parallel ac-

celeration, a‖ ≈ v2thi

〈

δn̂b̂ · ∇δT̂i

〉

, with vthi =
√

Ti0/mi

is the ion thermal velocity, δn̂ = δn/n0, and δT̂i =
δTi/Ti0. For simplicity, an adiabatic electron response is

assumed, i.e., δn̂ = eδφ/Te0 = τδφ̂, with τ = Ti0/Te0 and

δφ̂ = eδφ/Ti0. Therefore, the temperature ratio depen-
dence will be introduced in the quasilinear expression of
the turbulent acceleration. The ion temperature fluctua-
tions can be obtained by linearizing the ion temperature
evolution equation[16] as follows

−i

(

ωk −
14

3
ωdi,k + i|△ωk|

)

δT̂i

= iω∗Tiδφ̂k − i
4

3
ωdi,k

(

δn̂k + δφ̂k

)

, (11)

where ω∗Ti = −kθρivthi/LTi is the ion diamagnetic drift

frequency, with LTi = − (∂ lnTi/∂r)
−1

as the ion tem-
perature gradient scale length, ωdi ≈ −kθρivthi/R0 is
the ion magnetic drift frequency, △ωk is the the E×B

nonlinearity-induced self-decorrelation rate, and the ab-
solute value of △ωk is required by causality. Combining
the density fluctuations and the ion temperature fluctu-
ations, the turbulent acceleration can be written as

a‖ ≈ τv3thi
ρi
LTi

∑

k

(ℜτck)

[

1−
4

3
(1 + τ)

LTi

R0

]

k‖kθ〈|δφ̂k|
2〉,

(12)

where τck =
[

−i
(

ωk −
14
3 ωdi,k + i|△ωk|

)]−1
is inverse of

the ion propagator, and ℜ means real part. Since LTi

is small in comparison with the major radius R0, the
second term in Eq. (12) is subdominant. In the following,
we keep only the first term, which comes from the ion
diamagnetic drift.
Note that nonzero turbulent acceleration also requires

parallel symmetry breaking as does the residual stress
in the parallel Reynolds stress. Various cases of parallel
symmetry breaking mechanisms for the residual stress,
such as E×B shear[26], intensity gradient[27] etc, have
been studied. In toroidal geometry, kθ = m/r and k‖ =
kθxŝ/(qR0), with ŝ is the magnetic shear, x = rm,n − r,
and rm,n is the radial location of the resonant surface.
Proceeding as in the study of the residual stress caused
by intensity gradient, i.e., Ik(x) = |φk|

2(x) = Ik(0) +
x(∂Ik/∂x)[27], it follows that the turbulent acceleration
can be written as

a‖ ≈ τv3thi
ρi
LTi

ŝ

qR0

∑

k

(ℜτck)k
2
θx

2 ∂Ik
∂x

. (13)

For ŝ > 0, a positive (negative) intensity gradient results
in a positive (negative) parallel turbulent acceleration,
and a co-current (counter-current) rotation is thus driven
by this effect.
To elucidate the magnitude of the turbulent accelera-

tion, we compare it to the divergence of the residual stress
∇ · ΠRes

‖ and to the divergence of the diffusive velocity

flux ∇ · (χ‖∇〈U‖〉). We claim there are the appropriate
comparisons, as the effects are all dimensionally similar,
and scale as the rate of change of velocity. For symme-
try breaking by intensity gradient, the residual stress is
given by ΠRes

‖ = v3thi
ŝ

qR0

∑

k(ℜτck)k
2
θρix

2 ∂Ik
∂x [27]. Thus,

the ratio of the turbulent acceleration to the divergence
of the residual stress is

a‖/∇ · ΠRes
‖ ∼ τL/LTi

. (14)

Here, L is the length scale of variation of the resid-
ual stress, which can vary between LTi

and LI , with

LI = ((∂Ik/∂x) /Ik)
−1

being the intensity gradient scale
length. We see that the two contributions to the intrin-
sic torque are roughly comparable, depending upon τ and
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L/LTi
. Comparing a‖ to the turbulent diffusive velocity

decay rate χ‖〈U‖〉/L
2
v (corresponding to diffusive velocity

confinement rate 〈U‖〉/τ‖, where 1/τ‖ ∼ χ‖/L
2
v) gives:

a‖L
2
v

χ‖〈U‖〉
=

L2
v△

2

ρiLTi
LsLI

τ
vthi
〈U‖〉

. (15)

Here, Lv is the scale length of the parallel flow gradi-
ent, Ls is the magnetic shear scale length, and χ‖ =
∑

k(ℜτck)k
2
θρ

2
i v

2
thiIk is the turbulent diffusivity of paral-

lel flow. For the particular case vthi/〈U‖〉 ∼ a/ρi and

Lv ∼ LTi
∼ a, Eq. (15) reduces to

(

a‖L
2
v

)

/
(

χ‖〈U‖〉
)

∼

τ
(

△2/LsLI

) (

a2/ρ2i
)

. This ratio is roughly order of
unity. We have shown that the turbulent acceleration
is qualitatively different from, but is quantitatively com-
parable to, the divergence of the residual stress and the
divergence of the diffusive flux. Therefore, it is neces-
sary to include the turbulent acceleration for the study
of parallel rotation.

One important question concerning turbulent acceler-
ation is how the theory can be tested by numerical sim-
ulations. The crux of this issue is that while the to-

tal local intrinsic torque density τI can be measured di-
rectly [28], -by numerical cancellation experiments [29]
or other means, -it is not so clear how to distinguish
residual stress and acceleration contributions, since τI =
−∇·ΠRes

‖ (r)+ a‖(r). To this end, we propose a compar-
ison between integrated intrinsic torque, as measure for
the cases of (i) vanishing fluctuations on the boundary
(i.e., δφ(±a) = 0) and (ii) finite boundary fluctuations
(δφ(±a) 6= 0). This choice follows from the observation
that the radially integrated intrinsic torque is given by

TI =

∫ a

−a

τI(r)dr = −ΠRes
‖ (r)

∣

∣

a
−a +

∫ a

−a

a‖(r)dr. (16)

Note that TI 6= 0 is required for a net spin-up. For
the case of vanishing turbulence on the boundary, TI =
∫ a

−a a‖(r)dr, so a finite value can result only from turbu-
lent acceleration, and thus TI constitutes a direct mea-
sure of the integrated turbulent acceleration. However,
for a corresponding case with δφ(±a) 6= 0, but other
quantities (i.e., parameters, profiles, etc) the same, TI

has contributions from both the residual stress on the
boundary and the radially integrated a‖. Subtracting the

results for
∫ a

−a τI(r)dr for the two cases could suggest a
trend which reveals the residual stress contribution. Note
that a‖ and ΠRes

‖ both depend upon the same spectral
cross-correlator and the same symmetry breaking mech-
anism. This comparison should separate at least the
radially integrated contributions to the intrinsic torque
from ΠRes

‖ . Since it is a comparison of radially integrated
quantities, it should not be very sensitive to turbulence
spreading near the boundary and related phenomena. Fi-
nally, truth in advertising compels us to say that this test
will elucidate only the radially integrated a‖, but not the

local profile of a‖. Further consideration is required to
address that.

Of course, a second important question is how to mea-
sure a‖ and thus test the theory in a physical experiment.
To this end, we note that the presence of a‖ necessar-
ily breaks the condition of zero total velocity flux (i.e.
Reynolds stress) in a steady state of intrinsic rotation.
Thus, ∂〈U‖〉/∂t = −∂r〈ṽrŨ‖〉 + a‖ and stationarity im-
ply

〈ṽrŨ‖〉 =

∫ r

0

dr′a‖(r
′), (17)

so that a finite value of 〈ṽrŨ‖〉(r) implies
∫ r

0
dr′a‖(r

′) 6=
0, i.e., a finite value of the radially integrated turbu-
lent acceleration. The parallel Reynolds stress 〈ṽrŨ‖〉
could be measured directly by a number of means, such
as Mach probes (at the edge) [30] or beam emission
spectroscopy (BES) velocimetry [31] using an image in
the r-parallel plane. We note that this would be a
challenging new application of BES, which so far has
been used only for velocimetry measurement of 〈ṽr ṽθ〉
[32]. Given the daunting prospect of measuring 〈ṽrŨ‖〉,
we offer a second, purely macroscopic test. Using the
condition of stationarity and the total velocity balance
condition, we have the jump condition ∇〈U‖〉

∣

∣

r+△r
r =

(

ΠRes
‖

χ‖
+

Vpinch〈U‖〉

χ‖
−

∫
r

0
dr′a‖(r

′)

χ‖

)r+△r

r

. For smoothly

varying profiles and χ‖, Vpinch, and ΠRes
‖ , it follows

that ∇〈U‖〉
∣

∣

r+△r
r

∼= −
∫ r+△r

r
dr′a‖(r

′)/χ‖ ∼ −△ra‖/χ‖.
Here, χ‖ could be approximated by χi, determined in-
dependently. To assure smoothness, △r must be smaller
than the scale of possible variation of ΠRes

‖ , Vpinch, etc.
In practice, this surely is satisfied if △r < LI , a typi-

cal mesoscale. Taking LI ∼ (ρiLTi
)
1/2

, for ρi ∼ 0.1cm,
LTi

∼ 50cm, one can have △r . 2.24cm. Thus, present
day high resolution beam blip charge exchange recombi-
nation spectroscopy (CXRS) measurements [33] should
have sufficient accuracy for this. Note that the key point
here is that the fastest varying contribution to ∇〈U‖〉 on

mesoscales comes from
∫ r

0
dr′a‖(r

′). Observe that for suf-
ficiently small △r, this method gives an effectively local

measurement of a‖!

In summary, we discovered a turbulent acceleration
term in the parallel rotation equation by a calculation
base on the gyrokinetic equation. The turbulent accel-
eration cannot be written as a divergence of the parallel
Reynolds stress, which is similar to the turbulent mo-
mentum source found independently in Ref.[23]. It has
different physics from the residual stress, which enters the
rotation equation as a divergence. In particular, the fact
that the residual stress contributes a divergence term to
the rotation equation means that its effect on net rotation
enters via its value at the edge. In contrast, parallel ac-
celeration can be distributed throughout the entire cross
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section and is not particularly edge sensitive. A new can-
didate mechanism for the origin of spontaneous rotation
is thus revealed. We proposed a method for testing the
effects of turbulent parallel acceleration by gyrokinetic
simulation based on the difference between the turbu-
lent acceleration and residual stress. We also proposed a
direct experimental test to determine the relative contri-
butions from ΠRes

‖ and a‖.
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