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Abstract

Three-dimensional kinetic simulations of magnetic reconnection reveal that the electron diffusion

region is composed of two or more current sheets in regimes with weak magnetic shear angles

φ <∼ 80◦. This new morphology is explained by oblique tearing modes which produce flux ropes

while simultaneously driving enhanced current at multiple resonance surfaces. This physics persists

into the nonlinear regime leading to multiple electron layers embedded within a larger Alfvénic

inflow and outflow. Surprisingly, the thickness of these layers and the reconnection rate both remain

comparable to two-dimensional models. The parallel electric fields are supported predominantly

by the electron pressure tensor and electron inertia, while turbulent dissipation remains small.

PACS numbers:
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The energy release driven by magnetic reconnection is important for a wide range of

applications in space, laboratory and astrophysical plasmas[1]. In high-temperature plasmas,

reconnection involves a coupling between the macroscopic sheared magnetic field and the

kinetic scales where the frozen-flux condition is violated within a diffusion region. The

present understanding is based on a two-dimensional (2D) picture [2] in which the ions

decouple from the field on the ion inertial scale, while electrons decouple within a much

smaller layer where the frozen-flux condition is broken by electron inertia and non-gyotropic

terms in the pressure tensor [3–6]. These electron layers can become highly extended [7–10],

indicating an inherent coupling to the larger dynamics.

Extending these results to large three-dimensional (3D) systems introduces a number of

complications. First, the 3D structure of reconnection remains uncertain, since the dynamics

may proceed at multiple competing orientations in both the linear and nonlinear regimes,

leading to a spectrum of interacting flux ropes [11–13]. Secondly, various types of kinetic

instabilities which are excluded in 2D may drive turbulence in 3D and produce anomalous

resistivity or viscosity[3]. For example, lower-hybrid instabilities can produce anomalous

resistivity in certain regimes within neutral sheets[14]. And in the strong guide field regime,

recent 3D kinetic simulations [15] of force-free current sheets have reported a fast growing

electron shear instability, resulting in strong turbulent viscosity and associated broadening

of the layer. However, the persistence of these effects in large systems remain uncertain, due

to the limited spatial volume and relatively short time durations considered.

In this letter, we re-examine these guide-field regimes using fully kinetic 3D simulations

with volumes∼ 300× larger and durations over∼ 12× longer than previously considered[15],

which is sufficient to distinguish between transient effects and to allow coupling to 3D flux

ropes dynamics. We consider parameter regimes βe ≡ 8πnT/B2 ∼ 0.01 → 0.2 where force-

free current layers are applicable and magnetic shear angles from φ = 28◦ → 180◦. As

discussed in Ref. [15], these weaker shear angles are relevant to the solar corona [16, 17],

the solar wind [18, 19] and planetary magnetospheres [20–22]. Our results reveal a num-

ber of striking differences with the previous small-scale studies[15]. First, using a combi-

nation of linear theory and simulations, we demonstrate that the dominant instability is

collisionless tearing, with no evidence of turbulent broadening in the electron layers. The

only clear exception is within very thin layers where electron-ion streaming instabilities are

triggered[23, 24]. While these regions can drive localized bursts of turbulence at early time,
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it appears these streaming instabilities are difficult to maintain in large simulations due to

the strong electron parallel heating in low-β reconnection [25]. Secondly, the fastest growing

tearing modes occur at oblique angles for regimes with weak magnetic shear φ <∼ 80◦. This

has dramatic implications for the 3D structure, since these modes gives rise to oblique flux

ropes while simultaneously driving enhanced current at multiple resonance layers.

This physics persists into the nonlinear regime and gives rise to reconnection layers that

are intrinsically 3D, with multiple electron diffusion regions embedded within a single ion-

scale layer with Alfvénic inflow and outflow. While secondary tearing is observed within the

electron layers, there is no evidence of the previously reported electron shear instability[15]

and the measured anomalous resistivity remains small. As a consequence, the characteristic

layer thickness, pressure agyrotropy [26] and reconnection rate all remain comparable to

2D simulations. The parallel electric field is balanced through the combined influence of

electron inertia and the electron pressure tensor, but with one important difference. While

2D symmetric reconnection layers require a non-gyrotropic contribution to the pressure

tensor near the x-line[4–6], this symmetry constraint is removed in 3D, allowing temperature

anisotropy additional flexibility to break the frozen-flux condition.

We consider force-free current layers with B = Bo tanh(z/λ)x̂ +Bo(b
2
g + sech2(z/λ))1/2ŷ,

corresponding to a field of magnitude Bo(1 + b2g)
1/2 which rotates by an angle φ ≡

cos−1
[
(b2g − 1)/(b2g + 1)

]
across a layer with half-thickness λ. Here bg is the relative mag-

nitude of the imposed guide field. The initial distributions are Maxwellian with spatially

uniform density no and temperature (Ti = Te). The ion population is stationary while the

electrons have a net drift Ue to produce a current density J = −enoUe consistent with

∇ × B = 4πJ/c. We consider the tearing stability of this configuration for an arbitrary

wavevector k = kxx̂ + kyŷ corresponding to oblique angle θ ≡ tan−1(ky/kx) and resonance

surface zs/λ = −tanh−1[(1 + b2g)
1/2sinθ] where F ≡ k ·B = 0. In the outer region, the

magnetohydrodynamic model is used to obtain an eigenmode equation [27] of the form

ψ̃′′ = (k2 + F ′′/F )ψ̃, where ψ̃(z) is the perturbed flux function at the oblique plane and

k2 ≡ k2x + k2y. By combining the approximate solutions for kλ� 1 and kλ� 1 in the same

manner as Ref. [28], we obtain

∆′ ≡ lim
ε→0

1

ψ̃

[
dψ̃

dz

]zs+ε
zs−ε

≈ 2

kλ2
(1 + b2gtan2θ)− 2k ,

where ∆′ measures the drive for tearing perturbations[27]. Using the standard matching
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approach [13, 29] to the kinetic resonance layer gives

γ

kvthe
≈ d2e∆

′

2
√
πls[1 +

√
meTe/(miTi)]

, (1)

where vthe ≡ (2Te/me)
1/2 is the electron thermal speed, de ≡ c/ωpe is the electron inertial

length, ωpe = (4πe2no/me)
1/2 is the plasma frequency and ls is the scale length for variation

in k‖ = k ·B/|B| given by

1

ls
≡ 1

k

(
dk‖
dz

)
z=zs

=
cos2 θ − b2g sin2 θ

λ cos θ(1 + b2g)
1/2

.

Since ω ∝ k ·Ue ≈ 0 in the resonance layer, the real frequency vanishes and the modes

are purely growing. Tearing perturbations are unstable for ∆′ > 0 corresponding to kλ <

kcλ ≈ (1 + b2gtan2θ)1/2 and |θ| < θc ≈ tan−1(1/bg). The shortest wavelength mode is

kλ ≈
√

2 at θ = θc, while the most unstable modes are predicted to be oblique when

bg > bg,c =
√

1/[2(kλ)2]− 1/2. For modes with kλ ≈ 0.5 this gives bg,c ≈ 1.2 corresponding

to magnetic shear angles φ <∼ 80◦. At this wavelength, the theory predicts oblique growth

rates that are only ∼ 2% faster for bg = 4, but the effect becomes stronger for shorter

wavelengths.

To test this theory, fully kinetic simulations were performed using the VPIC code[30].

Unless otherwise stated, all simulations have parameters vthe/c = 0.21 and ωpe/Ωce = 2

where Ωce = eBo/(mec), which implies βe ≡ 8πnoTe/B
2 = 0.18/(1 + b2g). Spatial scales are

normalized by either de or di = de(mi/me)
1/2 and time is normalized by Ωci = eBo/(mic).

Boundary conditions are periodic in the x and y directions, while the z-boundaries are

treated as a perfect reflecting conductor. A series of 2D simulations were performed with

fixed Lx = 4πλ corresponding to kλ ≈ 0.5 to independently measure the tearing growth rate

at each resonance surface. This was done by rotating the initial 1D equilibrium about the

z-axis by an angle θ in order to select a resonance surface. As illustrated in Fig. 1, a range of

guide fields bg = 0→ 4, mass ratios mi/me = 1−1836 and scale thicknesses were considered.

For this range of parameters, the instability is always localized about the resonance surface

and produces magnetic islands consistent with tearing. The measured growth rates in Fig. 1

are within a factor of ∼ 2 of Eq. (1) for the angular dependence. However, the decrease

in the growth rate with increasing guide field is somewhat weaker in the simulations than

predicted by Eq. (1). More importantly, the simulation growth rates at oblique angles are

4



larger than Eq. (1) for stronger guide fields bg >∼ 1. This trend is opposite to that for the

Harris equilibrium[13], where diamagnetic drifts may strongly influence the stability[13, 31].

These 2D simulations demonstrate that tearing is the dominant instability, rather than

the previously reported shear instability[15]. The only possible exception to the latter is for

very low βe < 0.01 regimes and narrow layers λ <∼ de (explored, but not shown), where the

simulations feature a weaker growing instability with k > kc corresponding to ∆′ < 0 where

tearing should be stable. However, in contrast to the shear instability, this mode is localized

about the resonance surfaces and produces magnetic islands, but is too weak to play any

significant role for the parameters in this Letter.

While Eq. (1) roughly captures the magnitude and range of angles for the tearing insta-

bility, the oblique modes in the simulations grow even faster than predicted for guide fields

bg > 1. Since this physics persists into the nonlinear regime, it has immediate implications

for the 3D structure of the diffusion region. To demonstrate this effect, we compare small

3D simulations (Lx = Lz = 4πλ) with bg = 2.5 and the same initial conditions, and only

change the system size Ly. The simulation in Fig. 2A with Ly = 8λ only permits a single

resonance layer at zs = 0 and thus leads to a current density consistent with previous 2D

models. In contrast, the simulation in Fig. 2B with Ly = 46.9λ permits unstable modes

at zs = 0,±0.86λ corresponding to θ = 0◦,∓15◦. Initialized with a weak seed, the two

oblique modes dominate the evolution leading to enhanced current density at the respective

resonance layers as shown in Fig. 2B.

The persistence of this physics into the nonlinear regime is responsible for driving electron

diffusion regions with multiple current sheets. However, the existence of other competing

instabilities may complicate this picture. To examine this possibility, an additional 3D

simulation was performed with the same parameters of Fig. A-B, but with system size

Lx = 3.8L such that ∆′ < 0 for all modes. In this case, there was no evidence of any

instability growth (not shown). Next, we performed a series of 3D simulations for electron-

scale current sheets. The fluctuation spectrum is given in Fig. 2C for one example with

mi/me = 1836, λ = 2de and Lx = Ly = 24πλ to permit ∼ 6 tearing modes with kλ ≈ 0.5.

The dominant fluctuations are well-bounded by the marginal tearing criterion ∆′ > 0 (black

lines). The only clear evidence of additional instabilities occurs when the streaming exceeds

the Buneman threshold[23, 24] of Uey >
√

2vthe (for Ti = Te), which requires very thin

layers λ < de/[2βe(1 + b2g)]
1/2. While the example in Fig. 2C is slightly below this threshold,
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reducing the layer thickness to λ = de results in a strong Buneman instability that broadens

the layer (not shown), but over longer times the tearing modes still dominate.

To understand how these results apply to larger 3D systems, we performed four simula-

tions with varying guide field bg = 0.5, 1, 2.5, 4 for mi/me = 100, λ = 0.5di and system size

40di×40di×15di corresponding to 2048×2048×1024 cells and ∼ 1012 particles. Consistent

with the results in Fig. 1B, the cases with bg < bg,c ≈ 1.2 did not produce multiple electron

layers in the diffusion region. Due to limited space, here we focus on the cases with bg > bg,c.

The bg = 2.5 simulation is dominated by oblique flux ropes as shown in Fig. 3A leading to

diffusion regions with multiple electron current layers as illustrated in Fig. 3B. Notice that

the electron current sheets are oriented at angles θ ≈ ±11◦ roughly consistent with the

fastest growing oblique tearing modes (see Fig. 1C), suggesting that the 3D morphology is

determined by similar physics. This is surprising since the profiles have changed dramati-

cally from the initial condition. However, the total magnetic shear across the layer is fixed

and the fastest growing modes in Fig. 1 occur at roughly the same oblique angles in both

ion and electron-scale layers, which may explain the persistence of this angle.

The diffusion region illustrated in Fig. 3B consists of two electron layers embedded within

a single ion layer which seems to be the most common configuration for bg >∼ bg,c regimes.

However, it is possible to find examples with a single electron layer, and still others with three

or more electron layers. Two additional examples are illustrated in Fig. 4 for the strongest

guide field simulation bg = 4 (βe ≈ 0.01) at the two times indicated. This simulation

has the same domain size as in Fig. 3 but with a finer spatial grid (2048 × 2048 × 1536)

and ∼ 1.5 × 1012 particles. The current density in Fig. 4A features two electron layers

each with transverse scale ≈ 0.45de (measured by half-width at half-maximum) while the

example shown in Fig. 4B consists of three layers with similar thickness. In both cases,

the ion streamlines (white) shows a clear inflow and outflow associated with reconnection.

Measured in terms of the local electron gyro-radius, the half-thickness of these layers is

(2.5− 3.5)ρe, which is comparable to the layers near the x-line in 2D. The peak agyrotropy

[26] is 0.12, which is slightly larger than the corresponding 2D simulation.

To examine the dissipation physics, each term in the electron momentum equation was

evaluated and time averaged over an interval 1/Ωci (corresponding to 625 time slices). The

y-component of each term is shown in Fig. 4C across the layer as indicated. The peak

non-ideal electric field (red) inside the layers is balanced predominantly by the divergence
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of the pressure tensor ∇ ·Pe (green). For the example shown, there is a strong cancellation

between ∇ · Pe and the inertial term (blue), but for other slices there are regions in which

the inertial terms dominate. Separating quantities into a mean and fluctuating component,

the anomalous resistivity (purple) arising from 〈δneδEy〉 is typically quite small <∼ 5%.

The results in Fig. 4D were computed in the same manner, but for the parallel component

of the momentum balance across the three electron layers as indicated in Fig. 4B. The

parallel electric field E‖ is supported by the combined influence of electron inertia and the

pressure tensor. To understand this further, it is useful to decompose the pressure tensor

into a portion that is cylindrically symmetric (i.e., gyrotropic) about the local magnetic field

Peg ≡ Pe⊥I + (Pe‖ − Pe⊥)bb so that we can write (∇ ·Peg)‖ = ∂‖Pe‖ − (Pe‖ − Pe⊥)∂‖ ln |B|
where ∂‖ ≡ b · ∇ and b ≡ B/|B|. Evaluating these contributions from Pe‖ ≡ b · Pe · b
and Pe⊥ ≡ [Tr(Pe) − Pe‖]/2 demonstrates that in most regions (∇ · Pe)‖ ≈ ∂‖Pe‖ with

significant differences occurring only inside the electron layers where the pressure tensor

is non-gyrotropic, similar to recent spacecraft observations[32]. While intense streaming is

clearly evident, reconnection drives strong parallel heating in low-β regimes[25] resulting in

layers that are marginally below the Buneman threshold. There is no evidence that shear

instabilities broaden these layers or alter the dissipation physics. Instead, it appears the

electron pressure tensor provides ample flexibility for breaking the frozen-flux constraint in

low βe >∼ 0.01 regimes.

Despite the rich 3D dynamics, the energy conversion time scale is nearly the same as

2D. To quantify the 3D reconnection rate, one leading idea [33] involves computing 〈E‖〉 =∫
E‖ds along field lines passing through the diffusion region back into an ideal region where

E‖ = 0. Applying this approach is complicated by the fact that the magnetic field lines are

chaotic and it is difficult to identify a transition back into an ideal region. Instead, we selected

20 seed points along the central electron sheet in Fig. 4B and integrated E‖ along these

magnetic field lines once through the system. The resulting average 〈E‖〉 ≈ 0.023VABo/c is

very close to the corresponding 2D simulation near the x-line E‖ ≈ 0.025VABo/c, indicating

the rates are nearly the same. However, this does not imply that all details of the energy

conversion are the same. In particular, the 3D dynamics drives turbulence characterized by

a power-law with a break at the electron scale and there is preliminary evidence that more

electrons are accelerated into the energetic tails. Details of these results will be reported in

future publications.
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FIG. 1: Comparison of tearing mode growth rates from Eq. (1) (black line) with measured value

from 2D kinetic simulations (diamonds) as a function of oblique angle θ with kλ = 0.5 fixed, and for

the different guide fields, mass ratios and initial layer thicknesses. All growth rates are normalized

by γo, the theoretical value at θ = 0.
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conditions bg = 2.5, mi/me = 25, λ = 0.5di, βe = 0.025 and with (A) Ly = 8λ to allow a single

resonance surface at zs = 0 and (B)Ly = 46.9λ to allow three resonance surfaces zs = 0,±0.86λ.

(C) Spectrum of |δB2
z/B

2
o | from a simulation with λ = 2de, mi/me = 1836, bg = 2.5 and system

size 24πλ× 24πλ× 3πλ. The observed fluctuations are predominantly for wavevectors with ∆′ > 0

where tearing is unstable (black).
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100, bg = 2.5, βe = 0.025 at tΩci = 36. Shown is an isosurface of particle density, colored by

the current density along with sample magnetic field lines (yellow). Cutting planes also show the

current along with streamlines of the in-plane ion flow velocity (white). (B) Closeup of the electron

diffusion region along with sample streamlines of the current density (red).
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3D simulation with mi/me = 100, bg = 4 and βe ≈ 0.01 at tΩci = 44. (B) Example of a diffusion

region with three electron layers from the same simulation at later time tΩci = 65. (C) Terms in

the time-averaged electron momentum equation evaluated along the line indicated in A along with

the current profile and anomalous resistivity. (D) Dominant terms balancing the parallel electric

field E‖ along the line indicated in B. In both (C)-(D) all terms are normalized by noVABo/c

where VA = B/
√

4πmino.
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