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We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner
functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains
vorticity terms and a 4-dimensional Euclidean Berry monopole which gives axial anomaly. By inte-
grating out the zero-th component of the 4-momentum p, we reproduce the previous 3-dimensional
results derived from the Hamiltonian approach, together with the newly derived vorticity terms.
The phase space continuity equation has an anomalous source term proportional to the product
of electric and magnetic fields (FσρF̃

σρ
∼ EσB

σ). This provides a unified interpretation of the
chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in
the framework of Wigner functions.

PACS numbers: 25.75.Nq, 12.38.Mh, 13.88.+e

Introduction. — The Berry phase is a topological
phase factor acquired by an eigen-energy state when it
undergoes adiabatic evolution along a loop in parameter
space [1]. It is in close analogy to the Aharonov-Bohm
phase when a charged particle moves in a loop enclos-
ing a magnetic flux, while the Berry curvature is like
the magnetic field. The integral of the Berry curvature
over a closed surface can be quantized as integers known
as Chern-Simons numbers, which is similar to the Dirac
magnetic monopole and has deep connection with the
quantum Hall effect. The Berry phase is a beautiful, sim-
ple and universal structure in quantum physics and has
many interesting applications, for a recent review of the
Berry phase in condensed matter physics, see e.g. Ref.
[2].

Recently it has been found that features of the Berry
phase due to a 3-dimensional momentum monopole
emerge in a chiral kinetic equation without manifest
Lorentz covariance [3, 4]. A semi-classical kinetic equa-
tion has also been derived in an electron system with
Berry curvature [5]. Chiral anomaly is an important
quantum effect which is absent at the classical level. It
is manifested in the chiral magnetic and vortical effect
(CME and CVE) [6–8] as electric currents induced by
magnetic field and vorticity. Such effects and related top-
ics have been investigated within a variety of approaches,
such as AdS/CFT correspondence [9–13], relativistic hy-
drodynamics [14–18], and quantum field theory [7, 19–
25].

In this paper we will derive a new chiral kinetic equa-

tion with manifest Lorentz covariance from the Wigner
function [26]. Such an equation can provide semi-classical
description of quantum transport phenomena. We will
show that such a chiral kinetic equation incorporates fea-
tures of the Berry curvature and 4-dimensional Euclidean
monopole. These results reveal the inherent connection
between the Berry phase and gauge invariant Wigner
functions. One advantage of our approach is that the
vorticity effect in the chiral kinetic equation can be de-
rived straightforwardly which, apparently, is not the case
in other approaches. We also show that the previous non-
covariant kinetic equation [3, 4] is equivalent to our co-
variant one in the case of zero vorticity after we integrate
over the zero-th momentum p0. The relativistic chiral ki-
netic equation in our approach is quite general and valid
not only for Fermi liquid as in Ref. [3, 4] but for any
relativistic fermionic system. The phase space continu-
ity or Liouville’s theorem can be shown to be broken by
an anomalous term proportional to the product of elec-
tric and magnetic fields. So the phase space measure is
not conserved. It is modified by a factor related to the
Berry curvature. We will also show that the conserva-
tion law of the right- and left-hand currents is broken by
anomalous terms, which can be given by the flux of a
4-dimensional monopole in Euclidean momentum space.
Therefore we provide a unified interpretation of a variety
of properties such as CME/CVE, chiral anomaly, Berry
curvature and 4-d Euclidean monopole in the framework
of Wigner functions. We will use the metric convention
gµν = diag(1,−1,−1,−1).
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Equation of motion with Berry curvature in 3-

dimension. — We will follow an example in Ref. [3] to
illustrate the concept of Berry curvature. We consider a
Hamiltonian H ′ = σ ·p for spin-1/2 fermions in addition
to the normal part H(p,x), where σ are Pauli matrices.
Under an adiabatic evolution, the path-integral action
for fermions with positive helicity is

S =

∫

dt(ẋ · p+ ẋ ·A(x) − ṗ · a(p)−H(p,x)], (1)

where A(x) is the electromagnetic vector potential and
a(p) is the vector potential in momentum space resulting
from diagonalizingH ′ in path integral. We can generalize
the coordinate variables by combining p and x, ξa =
(p,x) with a = 1, 2, · · · , 6. The action can be cast into a
compact form,

S =

∫

dt[−γa(ξ)ξ̇a −H(ξ)], (2)

where γa = [a(p),−p−A(x)]. The equations of motion
are

γabξ̇b = −
∂H(ξ)

∂ξa
(3)

where γab ≡ ∂aγb(ξ)− ∂bγa(ξ) is given by

[γab] =

















0 Ω3 −Ω2 −1 0 0
−Ω3 0 Ω1 0 −1 0
Ω2 −Ω1 0 0 0 −1
1 0 0 0 −B3 B2

0 1 0 B3 0 −B1

0 0 1 −B2 B1 0

















, (4)

where Ω = ∇p × a(p) is the Berry curvature and B =
∇×A(x) is the 3-dimensional magnetic field. The deter-
minant of [γab] is det[γab] = (1+Ω ·B)2. We see that the
invariant phase space volume becomes

√

det[γab]d
3xd3p,

where
√

det[γab] = |1 + Ω · B| indicates the change of
phase space volume with time [27].
The Wigner function approach — In an alternative

quantum kinetic theory approach, the classical phase-
space distribution f(x, p) is replaced by the Wigner func-
tionW (x, p) in space-time x and 4-momentum p, defined
as the ensemble average of the Wigner operator [28–30]
for spin-1/2 fermions,

Ŵαβ =

∫

d4y

(2π)4
e−ip·yψ̄β(x+)U(x+, x−)ψα(x−), (5)

where ψα and ψ̄β are Dirac spinor fields, x± ≡ x ± 1
2y

are two space-time points centered at x with space-time
separation y, and the gauge link U ,

U(x+, x−) ≡ e−iQ
∫ x+
x
−

dzµAµ(z), (6)

ensures the gauge invariance of Ŵαβ . Here Q is the elec-
tromagnetic charge of the fermions, and Aµ is the elec-
tromagnetic vector potential. To simplify the quantum

kinetic equation under a background field we consider
a massless and collisionless fermionic system in a con-
stant external electromagnetic field Fµν in the lab frame.
The Wigner function for spin-1/2 fermions is a matrix
in Dirac space and satisfies the quantum kinetic equa-
tion [28–30], γµ(p

µ + i
2∇

µ)W (x, p) = 0, where γµ’s are
Dirac matrices and ∇µ ≡ ∂µx − QFµ

ν∂
ν
p . The Wigner

function can be decomposed in terms of 16 independent
generators of the Clifford algebra whose coefficients are
scalar, pseudo-scalar, vector, axial vector and tensor re-
spectively. The vector Vµ(x, p) and axial-vector Aµ(x, p)
component of the Wigner function can be determined by
the quantum kinetic equations (i.e. Eqs. (5-8) of Ref.
[26]) to the first order of space-time derivative ∂x and
the field strength Fµν :

Z
µ = pµδ(p2)Z0 +

1

2
pν [u

µων − uνωµ]
∂Z̄0

∂(u · p)
δ(p2)

−Qpν[u
µBν − uνBµ]Z̄0δ

′(p2)

+QǫµλρσuλpρEσZ̄0δ
′(p2), (7)

where Z = (V ,A ), Z0 = (V0, A0), Z̄0 = (A0, V0), with
the first order solutions V0 and A0 given by

[V0, A0] =
∑

s=±1

θ(su · p) [(fs,R + fs,L), (fs,R − fs,L)] ,

fs,χ =
2

(2π)3
1

es(u·p−µχ)/T + 1
, (χ = R,L), (8)

where R(L) denotes the right (left)-handed fermions and
µR,L = µ ± µ5. We have used notations Eσ = uρFσρ,
Bσ = (1/2)ǫσµνρu

µF νρ and ωµ = (1/2)ǫµνρσu
ν∂ρuσ,

which depend on x only via the fluid velocity u(x). We
use Z

µ
0 to denote the zero-th order term pµδ(p2)Z0 in

Eq. (7) and Z
µ
1 for the first order terms.

The vector and axial-vector current and the energy-
momentum tensor can be derived from V

µ and A
µ in

Eq. (7) by integrating over momentum: jµ =
∫

d4pV µ,
jµ5 =

∫

d4pA µ, and T µν = 1
2

∫

d4p(pµV ν + pνV µ). The
current jµ contains two parts proportional to magnetic
field and vorticity, known as the CME and CVE [6–8, 14],
respectively. So both effects are contained in the Wigner
function [26]. These currents and T µν are shown to obey

conservation equations [26]: ∂µj
µ = 0, ∂µj

µ
5 = − Q2

2π2E·B,
and ∂µT

µν = QF νρjρ.
Lorenz covariant chiral kinetic equation. — Now we

try to derive a new form of Lorentz covariant chiral ki-
netic equation in 4-dimensions from Eq. (6) of Ref. [26],
i.e. ∇µZ µ = 0, which holds for the zero-th and first or-
der Wigner function Z

µ
0 and Z

µ
1 separately. The zero-th

order equation ∇µZ
µ
0 = 0 can be rewritten as,

∇µZ
µ
0 = (∂xµ −QFµν∂

ν
p )[p

µδ(p2)Z0]

= δ(p2)[pµ∂xµ −QpµFµν∂
ν
p ]Z0 = 0. (9)

Here Z0 is the phase space distribution function and
given in Eq. (8). Eq. (9) is a Vlasov-like equation, from
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which we can extract dxσ/dτ = pσ/m0 and dpµ/dτ =
QpµFµν/m0, where τ is a world-line parameter, m0 is a
quantity with mass dimension (but not the fermion mass
since we are considering massless fermions) which can
be scaled away by collision terms, and QpµFµν/m0 is a
general Lorentz force.
Now we rewrite the first order equation∇µZ

µ
1 = 0 in a

way that only terms of spatial and momentum derivatives
of Z̄0 are kept,

∇µZ
µ
1 = Qδ(p2)[(u · b)Bµ − (b · B)uµ

+ǫµνρσuνbρEσ]∂µZ̄0

+δ(p2)

[

1

2
ωµ + ωµ(p · u)(b · u)

−2uµ(p · ω)(b · u)] ∂µZ̄0

−Q2δ(p2)(E · B)bσ∂pσZ̄0

+Qδ(p2)

[

1

2
(ω ·E)uσ

+
1

p2
(p · ω)pηF

ση

]

∂pσZ̄0 = 0 . (10)

where bσ ≡ −pσ/p2. The first two terms are proportional
to ∂µZ̄0 and the last two terms are proportional to ∂pσZ̄0.
We will show that δ(p2)bσ is a 4-dimensional monopole
in Euclidean momentum space. Combining Eq. (9) and
(10), we obtain the Lorentz covariant chiral kinetic equa-
tion

1

2
∇µ(V

µ ± A
µ) = 0

→ δ(p2)

[

dxσ

dτ
∂xσ +

dpσ

dτ
∂pσ

]

fR/L = 0, (11)

where the upper/lower sign corresponds to the right/left-
hand distribution, and dxσ/dτ and dpσ/dτ are given by

m0
dxσ

dτ
= pσ ±Q

[

(u · b)Bσ − (b · B)uσ + ǫσαβγuαbβEγ

]

±

[

1

2
ωσ + ωσ(p · u)(b · u)− 2uσ(p · ω)(b · u)

]

,

m0
dpσ

dτ
= −QpρF

ρσ ∓Q2(E · B)bσ

±Q
1

2
(ω ·E)uσ ∓Q(p · ω)bηF

ση . (12)

Here we have used notations

fR/L ≡
1

2
(V0 ±A0) =

∑

s=±1

θ(su · p)fs,R/L. (13)

Using the spatial and momentum divergences,

∂σ

[

dxσ

dτ
δ(p2)

]

= 0,

∂pσ

[

dpσ

dτ
δ(p2)

]

= ∓Q2(E ·B)∂pσ[b
σδ(p2)], (14)

we obtain

∂σ

[

dxσ

dτ
δ(p2)

]

fR/L + ∂pσ

[

dpσ

dτ
δ(p2)

]

fR/L

= ∓Q2(E ·B)∂pσ[b
σδ(p2)]fR/L. (15)

It is interesting to see that δ(p2)dxσ/dτ is conserved but
δ(p2)dpσ/dτ is not. We can combine Eq. (15) with the
chiral kinetic equation (11) to obtain the Liouville equa-
tion or the phase space continuity equation,

∂σ

[

dxσ

dτ
δ(p2)fR/L

]

+ ∂pσ

[

dpσ

dτ
δ(p2)fR/L

]

= ∓Q2(E ·B)∂pσ[b
σδ(p2)]fR/L. (16)

In deriving Eqs. (11-16), we have used the conditions
uµ∂µω

ν = uµ∂µB
ν = 0, ∂µω

µ = 0, ∂µB
µ = 2(ω · E),

∂µuν = ǫµντλuτωλ, ǫ
σρηξuρ∂σEξ = 0, ǫµνσρu

µωνBσ = 0,

ǫσραβǫσρµν = −2δαβ[µν], ∂
p
σb

σ = −2/p2, and ∂pσ[δ(p
2)] =

2bσδ(p
2). We see in Eq. (16) the breaking of continu-

ity for the phase space density by an anomalous term
proportional to E ·B.
The vector currents for right- and left-hand fermions

can be given by integration over 4-momentum from
dxσ/dτ as

jσR/L =

∫

d4pδ(p2)
dxσ

dτ
fR/L

=
1

2
(jσ ± jσ5 ), (17)

where jσ and jσ5 are given in Eqs. (17-18) of Ref. [26].
The energy-momentum tensor can also be obtained from
dxσ/dτ ,

T σρ =

∫

d4p

(

pσ
dxρ

dτ
+ pρ

dxσ

dτ

)

(18)

which gives Eq. (19) of Ref. [26]. Note that the vorticity
terms in Eqs. (11,12) are necessary for the presence of
the CVE in jσR/L and T σρ.
Chiral kinetic equation in 3-dimensions. — We can

obtain the chiral kinetic equation in 3-dimensions by in-
tegration over p0 for the Lorentz covariant chiral kinetic
equation (11) as,

∫

dp0δ(p
2)

[

dxσ

dτ
∂xσfR/L +

dpσ

dτ
∂pσfR/L

]

= 0, (19)

which amounts to calculating the following integrals

In =

∫

dp0δ(p
2)
pn0
p2
F (x, p),

with n = 0, 1, 2. We use the iǫ prescription

δ(x)P
1

x
= −

1

2π
Im

1

(x+ iǫ)2
(20)
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to evaluate the integrals by enclosing the pole p0 = |p|−iǫ
in the lower half-plane of p0, where ǫ is a small positive
number. Then we can derive the chiral kinetic equation
in 3-dimensions from Eq. (19),

dt

dτ
∂tfR/L +

dx

dτ
· ∇xfR/L +

dp

dτ
· ∇pfR/L = 0, (21)

where dt/dτ , dx/dτ and dp/dτ are given by

dt

dτ
= 1±QΩ ·B± 4|p|(Ω · ω),

dx

dτ
= p̂±Q(p̂ ·Ω)B±Q(E×Ω)±

1

|p|
ω,

dp

dτ
= Q(E+ p̂×B)±Q2(E ·B)Ω

∓Q|p|(E · ω)Ω± 3Q(Ω · ω)(p · E)p̂, (22)

with p̂ = p/|p| and the 3-dimensional Berry curvature
Ω = p/(2|p|3) [3, 4]. Turning off the ω terms in Eq.
(22), we reproduce Eqs. (14-15) in Ref. [4]. Note that
the ω terms in the chiral kinetic equation in 3-dimensions
come naturally from the Lorentz covariant chiral kinetic
equation in 4-dimensions.
Anomaly and 4-dimensional Berry monopole. — From

Eqs. (7), the anomalous conservation law of the left- and
right-hand current can be derived from ∂µj

µ = 0 and

∂µj
µ
5 = − Q2

2π2E · B,

∂ρj
ρ
R/L = ∓

Q2

4π2
(E · B). (23)

On the other hand, we can understand the chiral anomaly
in Eq. (23) from the perspective of a 4-dimensional Berry
monopole. To this end, we act ∂σ on Eq. (17), use Eqs.
(16) and carry out the integral in Euclidean space,

∂σj
σ
R/L = ∓Q2(E ·B)

∫

d4p∂pσ[b
σδ(p2)]fR/L

= ∓Q2(E ·B)
1

π
Im

∫ i∞

−i∞

dp0d
3p

×∂pσ

[

pσ

p2
1

p2 + iǫ

]

fR/L

= ±Q2(E ·B)
1

π

∫ ∞

−∞

dp4d
3p∂pE

σ

[

pσE
p4E

]

fR/L

= ±
Q2

4π2
(E ·B). (24)

We have used πδ(x) = −Im[1/(x+iǫ)] and taken analytic
continuation p4 = ip0 and p2 = −p2E. Note that in the
second equality of Eq. (24) the poles in Minkowski space
are p0 = ±

√

|p|2 − iǫ = ±|p|∓ iǫ, in order to avoid these
poles in Wick rotation the integral limit of p0 should
be [−i∞, i∞] which corresponds to [−∞,∞] for the p4
integral. We have also used

∂pE

σ (pσE/p
4
E) = 2π2δ(4)(pσE). (25)

Although for pE 6= 0, we have ∂pE
σ (pσE/p

4
E) = 0, but the

integral is non-vanishing, since
∫

d4pE∂
pE

σ (pσE/p
4
E) =

∮

dS3,σp
σ
E/p

4
E = 2π2. (26)

Note that the n-volume of n-sphere or the hyper-surface
area of (n+1)-ball with radius R is given by Sn =
[2π(n+1)/2/Γ((n + 1)/2)]Rn. So we see that δ(p2)bσ

plays the role of the Berry curvature of a 4-dimensional
monopole in Euclidean momentum space, where the sin-
gular point of the monopole is located at pE = 0. This
is related to the 3-dimensional case by simply imposing
the on-shell condition

∫

dp0δ(p
2)bσ = (0,Ω/2).

In fact, Eq.(5) has encoded the Berry phase already.
When a plus helicity fermion moves under a weak exter-
nal electromagnetic field, its momentum changes adiabat-
ically from k to k′. The Wigner function could develope
a nontrivial Berry phase related to the matrix element
〈

k + δk
∣

∣

∣
trŴγ0

∣

∣

∣
k
〉

∝ u†(k′)u(k) ≃ eiδk·a, where we have

u†(k)u(k) = 1 and aα ≡ iu†(k)∂αk u(k) =
(

a0, a
)

. The

curvature ̟αβ ≡ ∂αk a
β − ∂βk a

α yields a Berry magnetic
field ̟ij = ǫijkΩk but no Berry electric field (̟0i = 0).
Thus, the 3-dimensional a andΩ are naturally embedded
in the 4-dimensional result.
In summary, we have shown that the Berry curvature

and a 4-dimensional monopole in Euclidean momentum
space emerge in a new chiral kinetic equation with mani-
fest Lorentz covariance. The chiral anomaly can be inter-
preted as the flux of this 4-dimensional monopole. There
are vorticity terms in this chiral kinetic equation which
are necessary for the presence of the chiral vortical ef-
fect. The 3-dimensional chiral kinetic equation can be
obtained from the Lorentz covariant one by integration
over the zero-th component of the 4-momentum. It con-
tains vorticity terms in addition to what is previously
derived in the Hamiltonian approach. The phase space
continuity equation has an anomalous source term pro-
portional to the product of electric and magnetic fields.
Our approach to the chiral kinetic equation is quite gen-
eral and valid for relativistic fermionic systems.
Note added: During the completion of this work, we

learned that Son and Yamamoto were also working on
the similar topic [31].
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