
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tetraquark Mesons in Large-N Quantum Chromodynamics
Steven Weinberg

Phys. Rev. Lett. 110, 261601 — Published 26 June 2013
DOI: 10.1103/PhysRevLett.110.261601

http://dx.doi.org/10.1103/PhysRevLett.110.261601


LC14021

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

UTTG-06-13

Tetraquark Mesons in Large-N Quantum Chromodynamics

Steven Weinberg∗

Theory Group, Department of Physics, University of Texas

Austin, TX, 78712

Abstract

It is argued that exotic mesons consisting of two quarks and two antiquarks
are not ruled out in quantum chromodynamics with a large number N of
colors, as generally thought. Tetraquarks of one class are typically long-
lived, with decay rates proportional to 1/N .
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The suggestion[1] to consider quantum chromodynamics in the limit of a
large number N of colors, with the gauge coupling g vanishing in this limit
as 1/

√
N , has been had some impressive success in reproducing qualitative

features of strong interaction phenomena. In his classic Erice lectures[2]
describing these results, Coleman concluded that, for large N , quantum
chromodynamics should not admit tetraquark mesons — exotic mesons that
are formed from a pair of quarks and a pair of antiquarks — a result that
has been widely accepted[3]. This note will reach a different conclusion.
The large N approximation not only does not rule out tetraquark mesons,
it helps to understand their properties.

Coleman’s reasoning was as follows. By Fierz rearrangements of fermion
fields, any color-neutral operator formed from two quark and two antiquark
fields (aside from terms involving just one quark and one antiquark field)
can be put in the form

Q(x) =
∑

ij

CijBi(x)Bj(x) , (1)

where the Bi(x) are various color-neutral quark bilinears:

Bi(x) =
∑

a

qa(x)Γiq
a(x)−

∑

a

〈qa(x)Γiq
a(x)〉0 . (2)

Here qa is a column of canonically normalized quark fields,∗∗ with a an N -
component SU(N) color index and with spin and flavor indices suppressed;
the Γi are various N -independent spin and flavor matrices; 〈· · ·〉0 denotes
a vacuum expectation value; and the Cij are some symmetric numerical
coefficients, which we will take as N -independent. Coleman considered the
vacuum expectation value of the product of two of these operators, given by
a decomposition into disconnected and connected parts:

〈

Q(x)Q†(y)
〉

0
=

∑

ijkl

CijC
∗
kl

[

〈

Bi(x)B†
k(y)

〉

0

〈

Bj(x)B†
l (y)

〉

0

+
〈

Bi(x)Bj(x)B†
l (y)B

†
k(y)

〉

0,conn

]

. (3)

A one-tetraquark pole can only appear in the Fourier transform of the final,
connected, term, but according to the usual rules for counting powers of N ,

∗∗In his article Coleman used bilinears B
′

i(x) defined to contain an extra factor of
g2N1/2

∝ N−1/2. This makes no difference to results for observables.
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the first term is of order N2, while the final term is only of order N , and so
any one-tetraquark pole would make a contribution in (3) that is relatively
suppressed by a factor 1/N .

So far, so good, but what does this really show? Coleman concluded “In
the large-N limit, quadrilinears make meson pairs and nothing else.” But is
this justified? If there is a tetraquark meson pole in the connected part of
the propagator, what difference does it make if its residue is small compared
with the disconnected part? To take an analogy, the amplitude for ordinary
meson-meson scattering is proportional to the connected part of a four-point
function involving four quark-antiquark bilinear operators, which is of order
N , while the disconnected parts of the same four-point function are of order
N2. Does this mean that ordinary mesons do not scatter in the large N
limit?

The real question is the decay rate of a supposed tetraquark meson.
If the width of the tetraquark grows as some power of N , while its mass
is independent of N , then for very large N it may not be observable as a
distinct particle. Although Coleman did not address this issue, his discussion
may suggest that the rate for an tetraquark meson to decay into two ordinary
mesons must grow with N . As we will now see, this is not correct.

To calculate decay rates, we need to represent particle states with op-
erators that are properly normalized to be used as LSZ interpolating fields.
The propagator for a quark bilinear operator Bn(x) representing an ordinary
meson is proportional to N , but the residue of the pole in the propagator
of a properly normalized operator should be N -independent, so as noted by
Coleman, the properly normalized operators for creating and destroying or-
dinary mesons are N−1/2Bn(x). Similarly, if there is an one-tetraquark pole
in the leading part of the connected term in (3), which is of order N , then
the correctly normalized operator for creating or destroying a tetraquark
meson of this type is N−1/2Q(x). The amplitude for the decay of such a
tetraquark meson into ordinary mesons of type n and m is then proportional
to a suitable Fourier transform of the three-point function

N−3/2 〈T{Q(x)Bn(y)Bm(z)}〉
0

= N−3/2
∑

ij

Cij 〈T{Bi(x)Bn(y)}〉0 〈T{Bj(x)Bm(z)}〉
0

+N−3/2 〈T{Q(x)Bn(y)Bm(z)}〉
0,conn . (4)

The first term on the right is of order N−3/2N2 = N1/2, which would give
a decay rate proportional to N if the Fourier transform of this term con-
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tained a tetraquark pole, but it can’t contain such a pole, since it is just
the convolution of two meson propagators. The connected second term on
the right is of order N−3/2N = N−1/2, giving a decay rate of the tetraquark
into two light ordinary mesons proportional to 1/N , just as in the decay
of ordinary mesons. Numerous authors [4] have identified the f0(980) and
other narrow states as tetraquarks, though not in the context of the large-N
approximation.

There may be tetraquarks whose poles only appear in sub-leading terms
in the un-renormalized tetraquark propagator and decay amplitude, terms
of lower than first order in N , as emphasized to me in private communica-
tions from Marc Knecht and Santiago Peris and from José Peláez. Such a
tetraquark would have a decay rate of higher order in N than 1/N , though
of course it would still be long-lived if its mass were only a little larger than
the total mass of the mesons into which it could decay.

I am grateful to Frank Close, Luciano Maiani, Philip Page, José Peláez,
and Santiago Peris for helpful correspondence, and to Tamar Friedmann
for a seminar talk that spurred my interest in tetraquarks. I am specially
indebted to Santiago Peris and Marc Knecht for pointing out an error in an
earlier version of this paper. This material is based upon work supported by
the National Science Foundation under Grant Number PHY-0969020 and
with support from The Robert A. Welch Foundation, Grant No. F-0014.
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