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We consider strongly interacting systems of effective spins, subject to dissipative spin-flip processes
associated with optical pumping. We predict the existence of novel magnetic phases in the steady-
state of this system, which emerge due to the competition between coherent and dissipative processes.
Specifically, for strongly anisotropic spin-spin interactions, we find ferromagnetic, antiferromagnetic,
spin-density-wave, and staggered-XY steady states, which are separated by nonequilibrium phase
transitions meeting at a Lifshitz point. These transitions are accompanied by quantum correlations,
resulting in spin squeezing. Experimental implementations in ultracold atoms and trapped ions are
discussed.

Exotic magnetic states play a central role in the physics
of quantum many-body systems, and have been explored
in a wide variety of strongly correlated materials [1].
Realizing and exploring magnetic states has recently
emerged as a central goal in ultracold atomic physics
[2, 3]. Due to highly controllable and tunable interac-
tions, ensembles of ultracold neutral atoms and ions may
provide a unique laboratory to study exotic quantum
magnetism [2–8] Among the main obstacles are relatively
small energy scales associated with magnetic ordering
(e.g., the superexchange scale in the Hubbard model),
requiring cooling atomic systems down to very low tem-
peratures [2] and the slow timescales involved in spin
thermalization [9–11]. Furthermore, ultracold atoms are
fundamentally open, driven quantum systems far away
from their absolute thermal equilibrium. This motivates
the exploration of spin dynamics in the presence of driv-
ing and dissipation [12–29].
Recently a number of schemes involving dissipation to

create magnetic phases have been proposed. These typ-
ically use engineered reservoirs involving coupling multi-
ple lattice sites [12–14]. At the same time, one expects
single-site dissipation such as spontaneous decay to be
detrimental to realizing interesting magnetic states, re-
sulting e.g. in unwanted decoherence. In this Letter,
we demonstrate that optical pumping and spontaneous
decay can instead enrich the phase diagram, resulting in
new phases and phase transitions that do not exist in con-
ventional equilibrium systems. Significantly, these novel
states can be observed under conditions when realization
of conventional, equilibrium states is difficult.
The key idea of this work can be understood by con-

sidering the anisotropic spin-1/2 Heisenberg model (i.e.,
the XYZ model), which is governed by the Hamiltonian

H =
1

2d

∑

〈mn〉

(Jxσ
x
mσx

n + Jyσ
y
mσy

n + Jzσ
z
mσz

n), (1)

where σx
n, σ

y
n, σ

z
n are the Pauli matrices for an effective

spin n. We assume that the spins are localized on a
d-dimensional cubic lattice with nearest-neighbor inter-
actions. In the presence of conventional optical pumping,

this Hamiltonian is augmented with a dissipative process
that flips the spins down at some rate γ (i.e., it corre-
sponds to the jump operator σ−

n on every site, where
σ±
n = (σx

n ± iσy
n)/2).

The steady state of this open many-body system is
easy to understand in the case of isotropic spin-spin
interactions, namely the XXZ model (with either fer-
romagnetic or antiferromagnetic couplings). For this,
the Hamiltonian can be rewritten in the form H =
(1/2d)

∑

[2Jx(σ
+
mσ−

n + σ−
mσ+

n ) + Jzσ
z
mσz

n]. This Hamil-
tonian conserves the total number of spins in the | ↑〉
state, and therefore does nothing to counteract the spon-
taneous decay. Thus, the steady state is a trivial dark
state with all spins polarized, | ↓↓ · · · ↓〉〈↓↓ · · · ↓ |, so the
XXZ model never experiences a phase transition in the
presence of dissipation, regardless of Jx and Jz.

However, new types of magnetic order emerge
for strongly anisotropic couplings. The crucial
role of anisotropy can be understood as follows.
Each spin experiences an effective magnetic field
(Jx〈σ

x〉, Jy〈σ
y〉, Jz〈σ

z〉), which depends on the direction
of its neighbors [Fig. 2(a)]. It precesses about this ef-
fective field and also decays towards | ↓〉. In order for
the spin to point away from | ↓〉 in steady state, its
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FIG. 1. Mean-field phase diagrams for the dissipative XYZ
model with (a) Jz/γ = 1 and (b) Jz = 0, showing the different
phases: paramagnetic (PM), ferromagnetic (FM), antiferro-
magnetic (AFM), spin-density-wave (SDW), and staggered-
XY (sXY). The white arrow points to a Lifshitz point.
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precession must be strong enough to counteract the de-
cay. In the isotropic case, the spin is always parallel
to the magnetic field, so there is no precession at all.
On the other hand, when the couplings are sufficiently
anisotropic (e.g., Jx ≈ −Jy), the spin is roughly per-

pendicular to the magnetic field, so the precession is
strong enough to point the spin away from | ↓〉 [Fig. 2(a)].
This is in sharp contrast with thermal equilibrium state,
in which the spin tries to align with the magnetic field
rather than precess about it.
This competition between precessional and dissipa-

tive dynamics gives rise to a remarkable phase diagram
(Fig. 1), including ferromagnetic and antiferromagnetic
phases as well as spin-density-wave and staggered-XY
phases that do not exist in equilibrium. The spin-density-
wave, paramagnetic, and ferromagnetic phases meet at
multicritical Lifshitz points, at which the period of the
spin-density wave diverges [30]; such Lifshitz points have
been seen in equilibrium magnets with long-range inter-
actions [31, 32], but generally do not exist in nearest-
neighbor spin models. In addition, we find that a contin-
uous symmetry emerges for certain couplings; the spon-
taneous breaking of this symmetry leads to a phase we
call the staggered-XY phase. Finally, we find that quan-
tum correlations (as measured by spin squeezing) persist
near the phase transitions.
The model described here can be implemented in sys-

tems of trapped ions or systems of ultracold atoms with
anisotropic superexchange or dipolar interactions. The
spin states | ↑〉 and | ↓〉 correspond to two electronic
states of the ion or atom. In the case of ions, the spin-
spin interaction is obtained through virtual transitions
involving motional sidebands [4, 33, 34]. In the case of
ultracold atoms, the spin-spin interaction is obtained us-
ing a two-photon resonance that excites and de-excites
atoms in pairs [35], as explained in the Supplementary
Material, or using superexchange interactions in p-band
optical lattices [36]. In all cases, dissipation can be con-
trollably introduced using optical pumping.
Model. We now turn to detailed analysis of the phe-

nomena outlined above. The dynamics of the many-body
system are given by a master equation for the density
matrix ρ:

ρ̇ = −i[H, ρ] + γ
∑

n

[

σ−
n ρσ+

n −
1

2
(σ+

n σ
−
n ρ+ ρσ+

n σ
−
n )

]

.

(2)

Equation (2) has a unique steady state solution [37], and
we are interested in whether the steady state exhibits
a phase transition as the parameters Jx, Jy, Jz change.
Note that the decay is independent for each spin, in con-
trast with the Dicke model [28, 38]. Furthermore, the
spins are not in equilibrium with the environmental bath.
Thus, in contrast with the spin-boson model [39, 40], the
steady state is not the joint ground state of the system
and environment.

The master equation has a Z2 symmetry (σx
n, σ

y
n →

−σx
n,−σy

n), which will be spontaneously broken by the
magnetic phases, as explained below. In practice, there
may also be dephasing noise, leading to dissipative terms
in Eq. (2) like σz

nρσ
z
n; since the Z2 symmetry is unaf-

fected by these terms, the phase transitions we describe
are robust to dephasing, although the phase boundaries
are shifted.
Mean-field theory. We begin by solving for the steady

states of the model Eq. (2) at the level of mean-field
theory. We allow the mean field to vary on each site
to account for spatially inhomogeneous states [20]. The
mean-field equations, which are simply nonlinear Bloch
equations, are:
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where the sum over m is taken over nearest neighbors
of n. (A related model with only dephasing noise was
studied in Ref. [41, 42]. Another related model with an
external field and nonlinear damping was studied using
the Landau-Lifshitz-Gilbert equation [43, 44].)
Clearly, there is always a fixed-point solution, 〈σx

n〉 =
〈σy

n〉 = 0, 〈σz
n〉 = −1, in which all the spins are pointing

down. We call this the paramagnetic (PM) phase, since it
does not break the Z2 symmetry of Eq. (2). We now con-
sider the linear stability of the PM phase as a function of
Jx, Jy, Jz [45]. We consider d-dimensional perturbations
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FIG. 2. (a) Bloch-sphere plot, showing mean-field values of
〈~σ〉 (solid red arrow) and effective magnetic field (dashed blue
arrow) for Jx/γ = −Jy/γ = 1, Jz = 0. The vectors are
normalized to unit length. (b), (c) show the sXY phase in the
xy plane of the Bloch sphere. (b) shows one possible stable
configuration. Black and red arrows correspond to sublattices
A and B. (c) shows that the A sublattice (black solid arrow)
generates a magnetic field (black dashed arrow) that the B
sublattice (red solid arrow) precesses around. Similarly, the
B sublattice generates a magnetic field (red dashed arrow)
that the A sublattice precesses around. The angle θ can take
any value.
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with wave vector ~k = (k1, k2, . . . , kd) where kℓ = 2π/aℓ
and aℓ is an integer. We find that the PM phase is un-
stable to perturbations of wave vector ~k when

(

Jx
d

d
∑

ℓ=1

cos kℓ − Jz

)(

Jy
d

d
∑

ℓ=1

cos kℓ − Jz

)

< −
γ2

16
. (4)

This condition is satisfied only when the couplings are
sufficiently anisotropic.
When the PM phase is unstable, the system ends up

in a time-independent steady state with 〈σx
n〉, 〈σ

y
n〉 6= 0,

so it breaks the Z2 symmetry of the master equation.
There are four types of ordered phases: (i) Spatially uni-
form state, which we call the ferromagnetic (FM) phase,
resulting from instability of the PM phase to kℓ = 0 for
all ℓ. (ii) Spatially modulated state with a period of
two lattice sites in all directions, i.e., the system divides
into two sublattices. We call this the antiferromagnetic
(AFM) phase, and it results from instability to kℓ = π
for all ℓ. (iii) Spatially modulated state with a period
greater than two lattice sites in at least one direction,
which we call the spin-density-wave (SDW) phase. This
results from instability to all other kℓ. (iv) When Jz = 0,
there is also a staggered-XY (sXY) phase, resulting from
instability to all kℓ, which is discussed below. The phase
diagram is shown in Fig. 1. The transitions from the PM
phase are continuous, while the FM-AFM transition is
discontinuous.
We note two unusual features of this phase diagram.

First, along the boundary between the PM and SDW
phases, the ~k at which the instability of the PM occurs
approaches 0, meaning that the period of the SDW di-
verges [Fig. 3(a)]. This line culminates in a multicriti-
cal Lifshitz point [30] between the PM, FM, and SDW
phases. Lifshitz points occur in magnetic models with
competing interactions [31, 32], but are not found in equi-
librium nearest-neighbor magnets: thus, their existence
in nearest-neighbor magnets out of equilibrium indicates
that nonequilibrium phase diagrams can be qualitatively
richer than those in equilibrium. Lifshitz points show
enhanced fluctuation effects relative to conventional crit-
ical points [30], and hence offer a rich venue for studying
quantum fluctuations away from equilibrium.

The second distinctive feature of the phase diagram
is that the ordered phase breaks a continuous symme-
try when Jz = 0. In this case, the system divides into
two sublattices like in the AFM phase. However, the
angle between the two sublattices can take any value.
In the specific case of Jx = −Jy, the spins on the A
and B sublattices are at angles θ and −θ relative to the
x = y line on the Bloch sphere [Fig. 2(b)]. Any value of
θ corresponds to a stable configuration, since the sublat-
tices remain perpendicular to each other’s magnetic field
[Fig. 2(c)]. Upon ordering, this continuous U(1) sym-
metry between the sublattice spin orientations is sponta-
neously broken, leading to a phase we call the staggered-
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FIG. 3. (a) Unstable wave vector k along the lower boundary
of the PM phase in Fig. 1(a). A Lifshitz point occurs at
Jx/γ = 1.32. For convenience, only one-dimensional wave
vectors are shown. (b) Squeezing parameter ζ2, calculated
in the Gaussian approximation for Jz = 0. The sXY phase
has been whited-out, since the Gaussian approximation is not
valid there.

XY (sXY) phase. This phase has vortex-like topological
defects around which the relative orientation between A-
and B-sublattice spins rotates by 2π.
Comparison with equilibrium. It is instructive to con-

trast the above results with the equilibrium case (for
d > 1). The equilibrium ground state of Eq. (1) is or-
dered for any Jx, Jy, Jz [46]. The magnetization axis is
determined by the strongest of the coupling constants,
and the sign of that coupling determines whether the or-
dering is ferromagnetic or antiferromagnetic. Evidently,
the nonequilibrium phase diagram exhibits qualitatively
different behavior from this equilibrium case. The qual-
itative differences between equilibrium and nonequilib-
rium remain even in the limit γ → 0, although the steady
state takes an increasingly long time to reach.
Fluctuation effects. We now turn from mean-field

theory to an analysis of fluctuations. Such an analy-
sis was recently performed for driven polariton conden-
sates [47] and suggests that the static critical proper-
ties (i.e., renormalization-group fixed points) of a driven
Markovian system are related to finite-temperature equi-
librium critical properties. This would indicate that the
dissipative XYZ model discussed here undergoes true
phase transitions in two or more dimensions.
We estimate fluctuation effects and squeezing in the

Gaussian approximation by mapping the spins to hard-
core bosons [46]: σ+

n → b†n, σ
z
n → 2b†nbn − 1. This

gives a reliable approximation in the PM phase, where
〈σz

n〉 ≈ −1. To Gaussian order (which includes relaxing
the hardcore constraint), the resulting Hamiltonian is

H =
1

2d

[

(Jx + Jy)
∑

〈mn〉

(b†mbn + bmb†n) (5)

+(Jx − Jy)
∑

〈mn〉

(b†mb†n + bmbn)− 4dJz
∑

n

b†nbn

]

,

and the dissipative terms in the master equation are
γ
∑

n[bnρb
†
n − 1

2 (b
†
nbnρ + ρb†nbn)]. We now use standard

Keldysh path-integral techniques [48] to compute the re-
laxation rate, 〈σz〉, and the squeezing. We summarize
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FIG. 4. Correlation function 〈σx

mσx

n〉 for 1D chain of 16 spins,
from simulating the master equation. (a) Jz/γ = 1, showing
remnant of FM for Jx/γ = 2, Jy = 0 (blue circles, solid line);
remnant of AFM for Jx/γ = −2, Jy = 0 (green triangles,
dashed line); remnant of SDW for Jx/γ = 4, Jy/γ = 2 (red
squares, dash-dotted line). The period of the SDW matches
the mean-field prediction (5.3 sites). (b) Jx/γ = −Jy/γ =
1, Jz/γ = 0, showing remnant of sXY phase.

the results here and provide details in the Supplemental
Material.

(1) Relaxation rate. The rate at which the steady
state is approached can be read off from the poles of
the retarded Green’s function. For notational simplic-
ity, we assume d = 1 here. In the Gaussian approxi-
mation, the lowest pole has complex frequency −iγ/2±
2
√

(Jx cos k − Jz)(Jy cos k − Jz). A continuous phase
transition occurs when the frequency of this pole ap-
proaches zero; this precisely recovers Eq. (4).

(2) Below-threshold fluctuations. Near the transition,
one expects to find nonanalytic behavior in the number
of up spins,

∑

n〈σ
z
n〉. For Jz = 0, this scales as 〈σz〉 ∼

(γ2 + 16JxJy)
(d−2)/2. The divergence for d = 1 renders

the Gaussian approximation inconsistent, and is related,
as we shall show in a future work, to the absence of a
phase transition in one dimension (consistent with the
polariton-BEC case [47]).

(3) Squeezing. We find that spin squeezing, a measure
of quantum correlations, persists near the transition. It
can be calculated using the definition of squeezing for
bosons [49]: ζ2 = 1+2(〈b†b〉− |〈b〉|2)− 2|〈b2〉− 〈b〉2|. For
the case of Jz = 0, as the phase boundary is approached,
ζ2 → 1

2 in the thermodynamic limit for the k = 0, π
modes, signaling the presence of quantum correlations
[Fig. 3(b)].

Comparison with numerics. We have also simulated
the Eq. (2) in 1D using the method of quantum trajec-
tories [50]. Although there is presumably no phase tran-
sition in 1D, the numerical results already show quali-
tative features predicted by mean-field theory. For ex-
ample, when mean-field theory predicts FM, the cor-
relation 〈σx

mσx
n〉 is positive for all distances [Fig. 4(a)].

When there should be AFM, the correlation alternates
sign. When there should be SDW, the correlation varies
with a wavelength that matches the mean-field value.
When there should be sXY, 〈σx

mσx
n〉, 〈σy

mσy
n〉, 〈σx

mσy
n〉

are all 0 for odd distances and positive for even distances

[Fig. 4(b)]. Furthermore, the gap of the Liouvillian ap-
proaches 0 at the boundary of the PM phase, consistent
with the Gaussian approximation (see Supplemental Ma-
terial).

Experimental realization. The dissipative XYZ model
can be implemented experimentally using trapped ions.
One can use 131Yb+ and let | ↓〉 and | ↑〉 correspond
to 2S1/2|F = 0,mF = 0〉 and 2D3/2|F = 2,mF = 0〉.
In the presence of laser beams judiciously detuned from
certain motional sidebands, the ions interact via Eq. (1)
[4, 33, 34]. Jx, Jy, Jz can be on the order of 1-5 kHz, and
their magnitudes and signs can be varied by changing
the laser detunings [4]. By admixing a small component
(10−4) of 2P3/2 using an off-resonant laser, one broadens
the linewidth of | ↑〉 to 2 kHz. (To make this a closed
cycle, additional lasers optically pump back into | ↓〉 on a
much faster timescale.) Thus, the parameter space shown
in Fig. 1 is experimentally achievable. This setup can im-
plement an arbitrary lattice topology for a large number
of ions [51].

A variety of other realizations of the XYZ model are
also possible. One approach is to use ultracold atoms
coupled via dipole-dipole interactions. The XYZ Hamil-
tonian is implemented by driving a two-photon reso-
nance, so that atoms are excited and de-excited in pairs,
as explained in the Supplemental Material. This scheme
can be realized using Rydberg-dressed atoms [52], Ryd-
berg atoms [35, 53, 54], or dipolar atoms or molecules
[55]. We show explicitly in the Supplemental Mate-
rial that, for Rydberg-dressed atoms, the parameters
needed for the phase transitions (Fig. 1) are experimen-
tally achievable. Finally, one can adapt a recent proposal
for realizing XYZ models via superexchange in p-band
optical lattices [36] to include dissipation, by optically
pumping the atoms into the px orbital via an intermedi-
ate excited orbital (e.g., dx2−y2) that does not decay into
the s band.

Conclusion. In summary, we have computed the phase
diagram of anisotropic spin models subject to sponta-
neous decay, and shown that these models exhibit phases
(SDW and sXY) and phase transitions (Lifshitz point)
that are not found in similar equilibrium models. The
qualitative differences can be traced to the fact that in
equilibrium, spins align with the magnetic field, whereas
away from equilibrium, they precess about it. We find
that quantum correlations, as measured by squeezing,
persist near the dissipative transitions. This work paves
the way for future explorations of critical behavior and
nonequilibrium fluctuations near the phase transitions we
have identified. A particularly intriguing question is how
frustrated interactions (due to a triangular lattice) affect
the AFM and sXY phases.
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[21] T. E. Lee, H. Häffner, and M. C. Cross, Phys. Rev. Lett.

108, 023602 (2012).
[22] C. Ates, B. Olmos, J. P. Garrahan, and I. Lesanovsky,

Phys. Rev. A 85, 043620 (2012).
[23] B. Olmos, I. Lesanovsky, and J. P. Garrahan, Phys. Rev.

Lett. 109, 020403 (2012).
[24] F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E.
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