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Abstract 

The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was 

measured at various angles between the corrugations using an atomic force microscope. A strong 

dependence on the orientation angle of the corrugation is found. The measured forces were found 

to deviate from the proximity force approximation and are in agreement with the theory based on 

the gradient expansion including correlation effects of geometry and material properties. We 

analyze the role of temperature. The obtained results open new opportunities for control of the 

Casimir effect in micromechanical systems.  
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The Casimir effect [1] has seen rapid theoretical and experimental progress [2-6] in the 

last decade due both to its fundamental and technological applications. In its archetypal form it is 

an attractive force between two neutral conducting surfaces placed in vacuum. Despite its 

quantum nature, associated with the scattering of zero-point photons, the Casimir force between 

neutral metallic surfaces is a macroscopic phenomenon and can be observed at the micron scale. 

The Casimir force between two objects can be viewed as the collective interactions of the charge 

and current fluctuations induced by vacuum photons on the two bodies. Thus altering the length 

scale of these fluctuations using object geometry, dielectric properties and temperature lead to 

profoundly interesting effects. Corrugated boundaries are of interest due to the diffraction type 

coherent scattering effects of zero point photons that have been reported in these systems [7-12]. 

The photon wavelengths of interest are those that correspond to the separation distance. Other 

characteristic length scales in the problem are the corrugation period Λ, separation between the 

corrugations z, the thermal wavelength λT=ħc/kBT, and the material reflectivity through the 

plasma wavelength λp=2π c/ωp. The interplay of the different length scales and the angle 

between the two corrugations lead to a rich behavior in this system, making it a promising probe 

of these coupled phenomena [13-18].  

The normal Casimir force acting in the direction perpendicular to the interacting surfaces 

has been measured for sphere-plate configurations [19-30]. Periodically corrugated surfaces 

allow to better understand the macroscopic geometry effects of vacuum fluctuations. The 

geometry effects are usually discussed in terms of deviation from the proximity force 

approximation (PFA). In the simple PFA, curved surfaces are treated as a collection of flat 

infinitesimal surface elements and the Casimir energy is estimated as an additive sum of the local 

parallel plate Casimir energies. However, Casimir forces are non-additive and the PFA neglects 

diffraction effects and correlations from the interplay of geometry, material properties and 

temperature. The normal Casimir force between one corrugated surface and a sphere have been 

studied [8, 12, 31]. In Ref. [31] an atomic force microscope (AFM) was used to measure the 

normal Casimir force between a sphere and sinusoidal corrugation. In [8, 12] a microtorsional 

oscillator was used to measure the normal Casimir force between a sphere and rectangular 

corrugations and deviation from PFA demonstrated. For two aligned corrugated surfaces the 

lateral Casimir force [31] from the phase shift of the corrugations has been measured [9-11] and 

its geometry dependence demonstrated with an AFM [10, 11].  



 

3 

In this Letter we report the demonstration of the angle dependence of the normal Casmir 

force between two corrugations. The interaction is measured between an Au coated sinusoidally 

corrugated sphere and plate for different orientation angles between the corrugations. We find 

that the normal force measurement between two sinusoidally corrugated surfaces show the 

interplay of thermal, material and geometry effects. Note that the corrugations used are shallow 

and smooth. The obtained data are compared with theoretical calculations using the derivative 

expansion [33] at 300 K. For the corrugation periods used, the Casimir force changes with 

orientation angle, increasing by 15% at 130 nm for an angle change from 0° to 2.4°. The 

measured forces are consistent with theory at non-zero temperature. The strong observed 

dependence on the corrugation angle means, that this feature can be used in adjusting and 

controlling moving parts in proposed micromechanical devices using corrugated surfaces and the 

Casimir effect [34-36].  

A schematic diagram of the experimental setup is shown in Fig. 1 (please also see Ref. 

[37]). To perform the Casimir force measurement, two aligned corrugated surfaces, one planar 

and one spherical are required. The first planar surface is a diffraction grating with uniaxial 

sinusoidal corrugations of period Λ=(570.5±0.2) nm and amplitude A1=40.2±0.3 nm. The 

diffraction grating is covered with a 300 nm gold coating. A 1×1 cm piece of the grating was 

placed on top of a rotatable stage, mounted on top of the AFM piezo. To make electrical contacts 

to the corrugated plate a thin copper wire is soldered to a corner using indium wire. The 

corrugated plate was used as a template for the in situ pressure imprinting of the corrugations on 

the bottom surface of a sphere. Prior to the pressure imprinting, a polystyrene sphere is attached 

to the tip of a 320 μm long triangular silicon nitride cantilever of nominal spring constant 

~0.01 N/m using conductive Ag epoxy. Next the cantilever-sphere system was uniformly coated 

with a 10 nm Cr layer followed by a 20 nm Al layer and finally with a 110±1 nm Au layer using 

an oil-free thermal evaporator at 10−7 Torr vacuum. The radius of the Au-coated sphere was 

determined using a SEM to be R=99.6±0.5 μm. The vacuum chamber with the corrugated 

sphere-plate system was pumped down to a pressure below 10-6 Torr. Liquid N2 cooling was 

used to lower the noise. Next the corrugations from the plate were pressure imprinted on the 

sphere to obtain two aligned corrugations. To accomplish this, the sphere was first brought into 

near-contact with the corrugated plate using the AFM stepper motor. Next, the top of the 

cantilever with attached sphere was mechanically supported using a stepper motor controlled 
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metal stylus. Then the AFM piezo supporting the plane was extended, to make the imprint on the 

sphere. The amplitude of the imprinted corrugations was measured using an AFM to be 

A2=14.6±0.3 nm and the size of imprint area was measured with an SEM to be Lx~Ly~14 μm 

after completion of the Casimir force experiments. For changing the orientation angle between 

the corrugations, the corrugated plate was rotated using a stage with a third stepper motor. The 

stage was independently calibrated and the uncertainty in angle was determined to be 0.1°.  

The corrugated plate is connected to a voltage supply operating with 1 μV resolution. The 

cantilever with attached sphere is grounded. With the two corrugations aligned, 11 different 

voltages Vi in the range from -40 to -145 mV were applied to the plate. The cantilever deflection 

Sdef signal due to the total force (electrostatic and Casimir) between the sphere and plate was 

measured as a function of sphere-plate separation distance. Starting at the maximum separation 

of 2 μm, the plate was moved towards the sphere using a 0.05 Hz triangular voltage applied to 

the AFM peizo and the corresponding cantilever deflection was recorded every 0.2 nm till the 

plate contacted the sphere. The mean separation between sphere and plate z can be written as 

[37]:  

z=zpiezo+mSdef+z0,     (1)  

where zpiezo is the movement of the plate due to the piezo (calibrated interferometrically [38]), 

mSdef is the change in separation distance due to cantilever deflection, m is the cantilever 

deflection in nm per unit photodetector signal and z0 is the mean separation on contact of the two 

corrugated surfaces. 

The cantilever deflection Sdef from the total force is given by:  
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FCas and Fel=X(z)(V-V0)2 are the Casimir and electrostatic forces between sphere and grating. V0 

is the residual potential difference between the surfaces. The quantity k’≡km is the cantilever 

calibration constant measured in units of force per unit deflection (pN/mV), where k is the 

cantilever spring constant. The coefficient X(z) is calculated by using PFA to account for the 

curvature of the sphere and by using a perturbative expansion in powers of the amplitudes A1 and 

A2 to treat the corrugations:  
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where R is the radius of the sphere, Λ is the period of the corrugations, θ is the crossing angle 

between the corrugations, and Ly is the extent of the corrugations along the axis of the 

corrugations. Eq. (3) was checked with a numerical computation of the electrostatic force using a 

finite element method for separations between 160 to 400 nm, and was shown to agree to better 

than 1%.  

After measuring the deflection Sdef due to the total force, we subtracted any mechanical 

drift of the photodetector system with respect to the cantilever, determined the point of sphere–

plate contact and the cantilever deflection coefficient m=102.1±0.5 nm/unit deflection signal as 

described in Ref. [37, 39]. The value of m was used to calculate the change in separation mSdef 

due to the cantilever deflection in Eq. (1). V0, k’, and z0 are found from the parabolic dependence 

of the electrostatic force on the applied voltage as described in Ref. [37]. The cantilever 

deflection was determined at intervals of 1 nm using linear interpolation. At each sphere-plate 

separation, the deflection Sdef was plotted as a function of the applied voltage. The vertex of the 

generated parabolas corresponds to V0 and is determined by least χ2 fitting. The curvature of the 

parabolas at every separation corresponding to X(z)/k’ is fit using Eq. (3) to determine z0 and k’. 

The measurements were repeated 10 times leading to 110 forces at each separation. For θ=0° 

between the corrugations the obtained values were found to be V0=-(90.2±1.3) mV, 

z0=(126.2±0.4) nm, and k’=(1.35±0.02) pN/mV. The values of V0, z0, and k’ are found for each 

orientation angle and were confirmed to be independent of separation. From the value of z0 the 

absolute separation distance can be determined and the value of k’ was used to convert Sdef to a 

force.  

Using the calibration parameters above, the Casimir forces are obtained by subtraction of 

the electrostatic force from the total measured force as: Fcas(z)=k’Sdef(z)-X(z)(Vi-V0)2. The mean 

value of the normal Casimir force is shown as crosses in Fig. 2. The size of the cross corresponds 

to the total horizontal and vertical errors at 67% confidence level. The details of the experimental 

error analysis procedure can be found in Ref. [24, 37, 40]. For θ=0°, the random error was 0.51 

pN and separation independent. The systematic error in the Casimir force ranged from 0.79 to 

0.64 pN for separations from 127 to 300 nm. The total error in the Casimir force was found to 

range from 0.94 to 0.82 pN for separations from 127 to 300 nm. The Casimir force at a distance 

of 130 nm increases in the order 84.9, 88.8, 92.5 and 97.8 pN for orientation angles of 0, 1.2, 1.8 

and 2.4° respectively for a total change of 15%.  Note that this angle dependence is a finite size 
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effect. For larger angles, the multiple crossings of the corrugations will lead to negligible angle 

dependence.  

To compare the experiment with the theoretical Casimir force between the corrugated 

sphere and plate, we need to take into account the geometric features of the sphere-plate 

configuration as well as the corrugations. Different approximations are used for the two features. 

The sphere-plate geometry is treated using the PFA as FCas=2πRUcorr, where R is the sphere 

radius and Ucorr is the Casimir energy per unit area for two parallel corrugated plates at angle θ. 

The PFA is valid when the radius of curvature is much larger than the separation. The effect of 

corrugations on the Casimir force appear in the Ucorr term. The Casimir energy per unit area 

between corrugated plates can be calculated using the derivative expansion since the surfaces are 

gently curved because Λ is large compared to A1, A2 [33, 41, 42]. For an area LxLy the Casimir 

energy divided by this area is then given by: 
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where H(z,x,x’)=z+h1(x)-h2(x’) is the local separation distance between the plates with 

h1(x)=A1cos(2πx/Λ), h2(x’)=A2cos(2πx’/Λ) the profiles of the two plates and x’≡xcosθ-ysinθ.  

Note that for infinite plates this energy has no angular dependence on θ. Hence we consider 

angles θ for which the periodicity Λ/sinθ is larger than or comparable to Ly. The first term UPFA 

in Eq. (4) gives the PFA for the corrugation, and the remaining terms are the corrections in a 

derivative expansion. The functions U(d) and U′(d) are the expression for the Casimir energy per 

unit area between two parallel plates separated by a distance d and its derivative. These 

expressions are given by the usual Lifshitz formula and its partial derivative with respect to 

separation, respectively. The function α(d) is the coefficient of the first correction to the PFA and 

can be calculated as in Ref. [33]. The material properties are introduced in the calculation of 

U(d), U’(d), and α(d) in perturbative height expansion of the reflection coefficient [33]. 

 The theoretical computation of the Casmir forces was performed with the real properties 

of Au at 300 K. The permittivity of Au was expressed using the 6-oscillator model for the core 

electrons and the Drude model for the free electrons, in terms of the imaginary frequency ζ [4] 

as: 
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The plasma frequency ħωp=9 eV, the relaxation constant ħγ=0.035 eV, and the oscillator 

constants found in Ref. [4] were used. For the experimental errors here, the difference between 

γ≠0 (Drude model) and γ=0 (plasma model) cannot be discerned. The small roughness 

corrections were done as described in Ref. [11]. The roughness over 20 corrugation periods was 

found by analyzing the difference between the measured AFM profiles and an ideal sine curve. 

The rms roughness was found to be δ1=1.9 nm and δ2=2.9 nm for the corrugated plate and sphere 

respectively. 

 The comparison of the experimental data with theory is shown in Fig. 2. Good agreement 

is found. No fitting parameters are used. In the inset of Fig. 2, for θ=0, the deviation from PFA is 

explored by plotting the ratio of the experimental data to the force obtained from PFA 

(corresponding to UPFA). The largest deviation is 7.7%. Note that such a deviation is observed 

even for the shallow, smooth corrugations used. To further illustrate the role of correlation 

effects and the interplay of the material properties on the geometry of the periodic corrugations, 

the experimental data was compared with the difference force obtained by subtracting the 

theoretical PFA force from the measured values. This is displayed in Fig. 3a and 3b for angles 0° 

and 1.2o between the corrugations. Here the difference between the experimental data and the 

PFA is compared to the difference force between the derivative expansion and the PFA, 

corresponding to Ucorr - UPFA. The error bars (at 67% confidence level) represent the data and the 

theoretical difference is represented by the solid line. One can observe that there is a significant 

deviation of the experimental data from the theory based on simple PFA. For the separation of 

130 nm the absolute deviation is 5.9 pN and 4.2 pN for angles θ=0o and 1.2o, respectively, which 

is more than twice the error bar. As can be observed in Fig. 3 the solid lines representing the 

deviation of the derivative expansion theory from PFA are in good agreement with the deviation 

from PFA in the experiment. The role of the material dependence is explored by additionally 

comparing the theoretical difference force for an ideal metal at 300 K as the dotted curves in Fig. 

3. The apparent agreement in Fig. 3(b) is a numerical coincidence and is part of a trend, where 

the theoretical force difference for an ideal metal increases with angle (the difference is more 

telling for the other angles as shown in the supplementary materials). Note that the total Casimir 

force is always larger for the perfect metal. To explore the role of temperature the ratio of the 
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experimental data to the force from the derivative expansion at 300 K and 0 K is shown in the 

inset. The data is found to be consistent with 300 K.  

 In conclusion, we have experimentally demonstrated the angle dependence of the normal 

Casmir force between a corrugated plate and corrugated sphere. The measured Casimir force was 

shown to increase by 15% at 130 nm separation when the orientation angle between corrugations 

is increased from 0° to 2.4°. The measurements were found to be in agreement with theory based 

on the derivative expansion and shown to deviate significantly when the corrugations are treated 

only with the simple PFA. The experimental agreement when deviations from PFA along with 

real material properties are included, demonstrate the interplay of the correlation effects of the 

geometry with the material properties. The angle dependent Casimir force for two oriented 

corrugations is an important system for understanding the non-trivial combined interactions of 

geometry, material properties and temperature. This demonstration for corrugated surfaces will 

find applications in adjusting and controlling the functionality of closely spaced moving parts of 

micromachines.  
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Fig. 1: Schematic of the experiment setup. Inset is the AFM image of the imprinted corrugations 

on the sphere.  
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Fig. 2: Measured Casimir forces for different orientations of the corrugations. Data shown as 

crosses, from the top to the bottom correspond to angles of 0o, 1.2o, 1.8o and 2.4o respectively. 

The size of the crosses represents the total error. Solid lines represent the derivative expansion 

theory. Inset is the ratio of the data to the PFA force at θ=0°.  
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Fig. 3: Difference Casimir force Fexp - FPFA represented as crosses corresponding to error bars for 

θ (a) 0o and (b) 1.2o. Solid line is the difference between the two theories FDer–FPFA, which is a 

measure of correlation effects. Dashed line is the theoretical difference for ideal metal corrugated 
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surfaces at 300 K. The data is presented every 3 nm for clarity. Inset shows the ratio of the data 

to the force from the derivative expansion at 300 K (black squares) and 0 K (grey circles).  

  


