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1IFISC, Instituto de F́ısica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca, Spain
2Conservation Ecology Center, Smithsonian Conservation Biology Institute,
National Zoological Park, 1500 Remount Rd., Front Royal, VA 22630, USA

3Behaviour, Ecology, Evolution, and systematics Program,
University of Maryland, College Park, MD 20742, USA.

(Dated: April 18, 2013)

We investigate the relationship between communication and search efficiency in a biological con-
text by proposing a model of Brownian searchers with long-range pairwise interactions. After a
general study of the properties of the model, we show an application to the particular case of
acoustic communication among Mongolian gazelles, for which data are available, searching for good
habitat areas. Using Monte Carlo simulations and density equations, our results point out that the
search is optimal (i.e. the mean first hitting time among searchers is minimum) at intermediate
scales of communication, showing that both an excess and a lack of information may worsen it.

PACS numbers: 05.40.-a, 05.40.Fb, 87.23.Cc

Many living organisms, including bacteria [1], insects,
and mammals [2, 3] communicate for a variety of rea-
sons including facilitation of social cohesion [4, 5], de-
fense against predators [6], maintenance of territories
[7, 8], and to pool information on resource locations when
no single individual is sufficiently knowledgeable [9–13].
Communication among individuals frequently leads to
group formation [14], which often has clear direct ben-
efits such as reducing individual vulnerability to preda-
tors. Such strategies may, however, also have important
incidental benefits. For example, an individual that has
found a good foraging patch might try to attract con-
specifics to reduce its risk of predation, but also provides
its conspecifics with information on the location of good
forage, thus increasing the foraging efficiency of those re-
sponding to the call.

A variety of mammalian species are known to commu-
nicate acoustically over distances of up to several kilome-
ters [3, 15, 16], but while group formation via vocaliza-
tions has been well studied [3, 17, 18], incidental benefits
such as increased foraging efficiency have received little
research attention. In contrast, research on foraging ef-
ficiency has focused largely on independent individuals
[19–25], or on comparing foraging behavior across species
[26]. In addition, recent theoretical work [27] has focused
on the statistics of a population of independent random
walkers, but an interaction mechanism, and its influence
on search efficiency, has not been thoroughly studied. To
date, very few models have examined the potential effect
that long-distance communication [28] can have on move-
ment behaviors and population distributions, and many
open questions remain, particularly on the interrelation
between communication and optimal search for resources.
How can communication facilitate group formation and
identification of areas of high quality resources? Does a
communication range exist that optimizes foraging effi-

ciency? To what degree does search efficiency depend on
the communication mechanism? Finally, how does com-
munication affect individual space use in a heterogeneous
environment?

In this letter, we address these questions with a gen-
eral model of random search with two main ingredi-
ents: resource gradients and long-range communication.
We first introduce a simple theoretical model (that fo-
cuses on large-scale features of the search process and
does not account for fine-scale details such as collision
avoidance, group cohesion or density-dependent diffusiv-
ity [13, 28, 29]), and show how search time changes when
foragers share information. We then apply a specialized
version of the model to the particular case of acous-
tic communication among Mongolian gazelle, the dom-
inant wild herbivore in the Eastern steppes of Mongolia.
Gazelles must find each other and relatively small areas of
good forage in a vast landscape where sound can travel
substantial distances [30]. We aim to explore whether
acoustic communication in the Steppe could lead to the
formation of observed large aggregations of animals [31],
and how search efficiency depends on the distances over
which calls can be perceived. We wonder if the frequency
of the voice of the gazelles is optimal to communicate in
the Steppe, and if the call length-scales that optimize
search in real landscapes are biologically and physically
plausible. To do this, we couple an individual-based rep-
resentation of our model with remotely-sensed data on
resource quality in the Eastern Steppe.

We consider N particles which undergo a 2−D Brow-
nian random walk. Correlated random walks, often more
appropriate to model directional persistence in animal
movement reduce to Brownian motion for large spa-
tiotemporal scales [32]. The movement is biased by the
gradients of the landscape quality (local information),
and by the interaction among individuals through a com-
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munication mechanism that is activated when good re-
sources are found, thus providing information on habitat
quality in other areas (nonlocal information). The dy-
namics of any of the particles i = 1, ..., N is

ṙi(t) = Bg∇g(ri) +BC∇S(ri) + ηi(t), (1)

where ηi(t) is a Gaussian white noise term characterized
by 〈ηi(t)〉 = 0, and 〈ηi(t)ηj(t

′)〉 = 2Dδijδ(t − t′), with
D the diffusion coefficient. The term Bg∇g(ri) refers to
the local search, where g(r) is the environmental quality
function (amount of grass, prey, etc...) and Bg is the
local search bias parameter. BC∇S(ri) is the nonlocal
search term, with BC the nonlocal search bias parameter
and S(ri) is the available information function of the in-
dividual i. It represents the information arriving at the
spatial position of the animal i as a result of the com-
munication with the rest of the population. This term
makes the individuals move along the gradients of the
information received. This is a function of the superposi-
tion of pairwise interactions between the individual i and
each one of its conspecifics,

S(ri) = F





N
∑

j=1,j 6=i

A[g(rj)]V (ri, rj)



 . (2)

F is an arbitrary perception function that must be set in
each application of the model, V (ri, rj) is the interaction
between the receptor particle i depending on its position
ri and the emiting particle fixed at rj , and A[g(rj)] is
the activation function (typically, a Heaviside function)
that indicates that the individual at rj calls the others if
it is in a good habitat.
From the Langevin equation (1), and following the

standard arguments presented in [33, 34] it is possible
to write an equation for the evolution of the density of
individuals, ρ(r, t). This approach will allow us to fix the
parameters of the problem having a better understand-
ing of the role they are playing in the dynamics through
a dimensional analysis. However, in the case of the large
grazing mammals we are going to study later, it is not
very suitable to describe a population as a continuum
since the number of individuals is not very high and the
typical distances among them is large. Neglecting fluc-
tuations the continuum equation for the density is

∂ρ(r,t)
∂t

= D∇2ρ(r, t) +Bg∇ [ρ(r, t)∇g(r)] +

+Bc∇
[

ρ(r, t)∇F
(∫

dr′ρ(r, t)A[g(r′)]V (r, r′)
)]

, (3)

which is quite similar to the one derived in [35] to study
the transport of interacting particles on a substrate.
As previously stated, we wish to explore how forag-

ing times are affected when individuals share informa-
tion, but our model could also be generalized to the case
of predators which use prey’s signals to locate them, or
many other situations where animals obtain information

from conspecifics. For the general case, we consider an
identity perception function and a Gaussian-like interac-
tion kernel. Later, to check the robustness of the model
to changes in V , we will use a physically-motivated power
law interaction with an exponential cutoff. Manipulat-
ing its typical range via the standard deviation, σ, we
ask how the typical communication distance affects the
average efficiency of individuals searching for targets in
space (areas of high-quality forage). We give an answer
in terms of spatial distributions of individuals at long
times starting from a random initial condition, and the
mean first arrival time to the targets, τ , as it is done in
related works [36].
We begin with Monte Carlo simulations of the

individual-based dynamics in eq. (1) using a square sys-
tem, Lx = Ly = 1, with periodic boundary conditions,
and a population of N = 100 individuals. We use a
theoretical landscape quality function, g(r), consisting of
three non-normalized Gaussian functions, to ensure that
g(r) ∈ [0, 1], centered at different spatial points. The
available information function of the individual i depend-
ing on its position will be

S(ri) =

N
∑

j=1,j 6=i

A[g(rj)]
exp

(

−
(ri−rj)

2

2σ2

)

2πσ2
, (4)

where, as mentioned before, A[g(r)] is a theta Heaviside
function that activates the interaction when the quality
is over a certain threshold κ, A[g(r)] = Θ(g(r)− κ).
We observe that the first arrival time (Fig. 1 (right))

may be optimized with a communication range parame-
ter, σ, of intermediate scale. The number of individuals
from which a given animal receives a signal will typically
increase with the interaction scale. When this scale is
too small, individuals receive too little information (no
information when σ = 0), and thus exhibit low search
efficiency (Fig. 1). Similarly, interaction scales that are
too large lead to individuals being overwhelmed with in-
formation from all directions, also resulting in inefficient
search (Fig. 1). In this case, the information received by
any individual is constant over the whole space, so that
it does not have gradients to follow. Only intermedi-
ate communication scales supply the receiving individual
with an optimal amount of information with which to effi-
ciently locate the callers and the high-quality habitat ar-
eas they occupy. The same behavior is also shown by the
macroscopic equation (3) (left panel in Figure 1). Now τ
is defined as the time that passes until half of the popu-
lation has found a target, that is

∫

g(r)≥κ
ρ(r, t)dr ≥ N/2.

We have integrated the equation (3) in 1 − D system
of length L = 1, using a single Gaussian patch of re-
sources centered at L/2 and periodic boundary condi-
tions for a random initial condition. This is equivalent
to the case of an infinite system with equidistant high
quality areas. We have taken the calling bias as be-
ing much stronger than the resource bias to make the
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FIG. 1: Search time using the macroscopic equation (left)
with Bg = 0.50, Bc = 50, D = 0.75 and the individual based
description (right) with Bg = 0.50, Bc = 0.75, D = 0.05.
κ = 0.85gmax in both panels.

nonlocal mechanism much more important in the search
process and thus easier to see how the communication
range parameter affects the search time. The differences
between the 2−D individual-based and the 1−D deter-
ministic density equation description, coupled with the
parameter choices (stronger bias in the density equation),
explain the different observed time-scales in the left and
right panels of Figure 1. The distribution of individuals
in the long time limit, shows that all the animals end up
in good habitats, i.e., in areas where the maxima of the g
function occur (not shown). The values of the threshold
κ, as long as they fall within a reasonable range, only
change the absolute time scales of the searching process.

Next, we present the application of the model to the
Mongolian gazelle (Procapra gutturosa). A detailed anal-
ysis of gazelle relocation data has shown that, over the
temporal scales relevant to searching for resources (days
to weeks), Mongolian gazelle movement can be closely
approximated by simple Brownian motion. We quantify
the habitat quality in the Eastern Steppe of Mongolia us-
ing the Normalized Difference Vegetation Index (NDVI).
It is one of the most widely used vegetation quality esti-
mators that can be calculated from satellite imagery, and
has been already applied to gazelle habitat associations
in the Mongolian Steppe [38]. NDVI is characterized by
the function gd(r), a continuous function taking values
between 0 (no vegetation) and 1 (fully vegetated). As the
vegetation at low NDVI is too sparse, and at high NDVI
is too mature and indigestible, gazelles typically seek for-
age patches characterized by intermediate NDVI values
[38]. To make gradients of resources drive the movement
of the individuals to regions with intermediate NDVI val-
ues, we apply to the data the following linear transforma-
tion: g(r) = gd(r) if gd(r) < 0.5, and g(r) = 1 − gd(r) if
gd(r) > 0.5. It defines a resources landscape with values
between (0, 0.5) where 0 represents both fully vegetated
and no vegetation (i.e., low quality forage).

We study an area of ∼ 23000 km2[42] and assume that
the resources remain constant in time during foraging. It
is crucial now to properly choose the perception function
in order to realistically model the case of gazelles per-
forming acoustic communication. It is well known that

the sensitivity of the response of the ear does not follow a
linear scale, but approximately a logarithmic one. That
is why the bel and the decibel are quite suitable to de-
scribe the acoustic perception of a listener. Therefore we
choose an acoustic perception function of the form

S(ri) = 10 log10

(

∑N
j=1,j 6=i A[g(rj)]V (ri, rj)

I0

)

, (5)

where the sound calling of j, V (r, rj), plays the role of
a two body interaction potential, and I0 is the low per-
ception threshold (we take the value of a human ear,
I0 = 10−12 W m−2, which is similar for most other mam-
mals [39], and in any case, is just a reference value on
which our results will not depend). The interaction po-
tential mimicking acoustic communication is

V (ri, rj) =
P0

4π

e−γ|ri−rj |

|r− rj |2
, (6)

considering that sound from an acoustic source attenu-
ates in space mainly due to the atmospheric absorption
(exponential term), and the spherical spreading of the
intensity (4πr−2 contribution), and neglecting secondary
effects [40]. P0 may be understood as the power of the
sound at a distance of 1 m from the source. The ab-
sorption coefficient, γ is given by (Stoke’s law of sound

attenuation [39]) γ = 16π2ην2

3ρv3 , where η is the viscosity of
the air, ρ its density, v the propagation velocity of the
acoustic signal (which depends on the temperature and
the humidity), and ν its frequency. We work under envi-
ronmental conditions of T = 20oC, and relative humidity
of HR = 50%, which are quite close to the correspond-
ing empirical values for the summer months from the
Baruun-Urt (Mongolia) weather station, averaged over
the last 4 years. These values give an absorption coeffi-
cient of γ ≈ 10−10ν2 m−1. The inverse of the absorption
coefficient, γ−1, gives the typical length scale for the com-
munication at each frequency, and thus plays the same
role as the standard deviation, σ, did in the Gaussian in-
teraction used in the general model. From its functional
dependence, different values of the frequency will modify
the value of the absorption coefficient, and consequently,
will lead to different communication ranges. Therefore,
we will use sound frequency, ν, as the control parameter
of the interaction range.
From a statistical analysis of GPS data tracking the

positions of 36 gazelles between 2007 and 2011, we es-
timate a diffusion constant of D = 74 km2 day−1. To
give empirically-based values to the bias parameters, we
define a drift velocity, and based on previous field work
[38] we set vdrift = Bg∇g(r)+Bc∇S(r) = 10 km day−1.
The local search mechanism is responsible for short-range
slow movements, while nonlocal communication gives
rise to long and faster movements, and thus we require
Bg∇g(r) ≪ Bc∇S(r).
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FIG. 2: (Color online). Mean arrival time for 500 gazelles
(averaged over 50 realizations with different initial condi-
tions). Parameter values: D = 74 km2 day−1, Bg =
2.6× 10−3 km3 day−1, Bc = 13 km2 day−1, κ = 0.70gmax.

We couple an individual-based model following the dy-
namics of Eq. (1), with a data-based resources landscape
sampled every 500 m, and quantify the efficiency of the
search for areas of high quality resources in terms of the
mean first arrival time of the population. We explore the
dependence of this metric on the communication length,
γ−1, or equivalently the frequency, ν (Figure 2). Simi-
larly to other species, such as lions [15] or hyenas [16], the
optimal foraging time (41 hours) is obtained for γ−1 of
the order of kilometers (around 6 km). This result cannot
currently be checked with data. However, switching to
frequencies, the optimal search is obtained when gazelles
communicate at a frequency of 1.25 kHz, which lies in-
side the measured interval of frequencies of the sounds
emitted by gazelles, [0.4, 2.4] kHz [30, 41]. This means
that the search is optimal when the receiving individ-
ual has an intermediate amount of information. A lack
of information leads to a slow, inefficient search, while
an overabundance of information makes the individual
to get lost in the landscape. These different regimes are
also observed in the long time spatial distributions (i.e.
efficiency of the search in terms of quality) of the Figure
3. At intermediate communication scales, ν = 1 kHz,
(Fig. 3 bottom left) all of the animals end up in regions
with the best resources, regardless of where they started
from. For smaller (Fig. 3 top) or larger (Fig. 3 bottom
right) frequencies, some animals are still in low-quality
areas at the end of the simulation period.

In summary, our study clarifies some questions on the
relationship between communication and optimal search
for resources. Our key result is that, in general, interme-
diate communication distances optimize search efficiency
in terms of time and quality. Individuals are able to
find the best quality resource patches regardless of where
they start from, opening new questions about the distri-
bution of individuals in heterogeneous landscapes. The
existence of maximum search efficiency at intermediate
communication ranges is robust to the choice of func-

FIG. 3: (Color online). Spatial distribution of 500 gazelles
after 1 month (reflecting boundary conditions). ν = 0.1 kHz
(top), ν = 1 kHz (bottom left), ν = 15.8 kHz (bottom right).
The size of the star is related to the size of the group at a
position. Real data resources landscape.

tional form of V (r), allowing the model to be generalized
to many different ways of sharing information. Another
natural extension of the model would be to consider indi-
viduals exhibiting Lévy flight movement behavior. This
is left for future work, but preliminary results also show
the existence of an optimal intermediate communication
range.

Communication over intermediate scales results in
faster search, and all the individuals form groups in areas
of good resources. While this has obvious advantages in
terms of group defense and predator swamping, it will
also lead to rapid degradation of the forage (and thus
habitat quality) at those locations. This is the problem
of foraging influencing the patterns of vegetation, which
will be treated in the future. Shorter-scale communi-
cation implies an almost individual search, which helps
preserve local forage quality, but has clear disadvantages
in terms of group defense strategies. On the other hand,
longer scales lead to the formation of big groups (faster
degradation of foraging), and animals need more time to
join a group, which has negative consequences against
predation. Furthermore, acoustic communication scales
significantly larger than the optimal scale for foraging ef-
ficiency identified here would be biologically implausible,
even if ultimate group size (and not rate of group for-
mation) was the most important aspect of an antipreda-
tion strategy. Exploring tradeoffs between group defense
and individual foraging efficiency in highly dynamic land-
scapes may be a promising avenue for future research.
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