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We demonstrate that the pattern forming partial differential equation derived from the auxin
distribution model proposed by Meyerowitz, Traas and others gives rise to all spiral phyllotaxis
properties observed on plants. We show how the advancing pushed pattern front chooses spiral fam-
ilies enumerated by Fibonacci sequences with all attendant self similar properties, a new amplitude
invariant curve and connect the results with the optimal packing based algorithms previously used
to explain phyllotaxis. Our results allow us to make experimentally testable predictions.

PACS numbers: 87.18.Hf, 87.10.Ed, 02.60.Lj, 02.30.Jr

INTRODUCTION

The arrangement of phylla (flowers, seeds, stickers,
bracts, . . . ) on plants and their surface morphologies
have intrigued and mystified scientists from the time
of Kepler. A special challenge has been to understand
Fibonacci spiral phyllotaxis in which, on many plants,
phylla lie on families of visible clockwise and anticlock-
wise spirals. Counting spirals in each family, called paras-
tichies, results in numbers that follow a Fibonacci pro-
gression. Many explanations (Van Iterson [1], Levitov [2]
Douady and Couder [3], Atela, Golé and Hotton [4]) have
been teleological in nature and result in discrete models
based upon the rules of Hofmeister [5] and Snow and
Snow [6] which reflect optimal packing strategies. Mech-
anistic explanations, the “hows” rather than the “whys,”
are given in the works of Green, by Meyerowitz, Traas,
Kuhlemeier and Reinhardt, and by Newell, Shipman and
colleagues. They have focused on pattern forming phys-
ical and biochemical mechanisms: the buckling of the
plant’s tunica [7], the triggering of auxin inhomogeneti-
ties by PIN1 protein transport in cells [8] near its shoot
apical meristem (SAM) or combinations thereof [9].

In this Letter, we report on recent numerical results
which lend credence to the latter view that almost all
features of phyllotactic configurations are the result of a
pattern forming front whose origin is a combination of
instabilities described above. What is even more surpris-
ing but nevertheless gratifying is that the locations of the
maxima of the auxin field, which can act as phyllum initi-
ation sites, coincide with the point configurations gener-
ated by the discrete models of the teleological approach.
This suggests that pattern forming systems may provide
a new tool for addressing optimal packing challenges. In
short, instability generated patterns may be the mech-
anism by which plants and other organisms can pursue
optimal strategies.

The model we use derives from a continuum approxi-
mation to the cell dynamics described in [8]. It assumes
that the main contribution comes from the instability of
a uniform auxin concentration due to reverse diffusion.
This occurs when PIN1 proteins move from the cell inte-

FIG. 1. A pseudocolor plot of u(r, θ) on the inner section
r < 89 of a pattern initiated at r = 233 with parastichy
numbers M = 89 and N = 144. A movie [S1] may be found
in the supplemental material.

rior to the cell wall, where they orient to drive auxin with,
and not against, its concentration gradient. The model
also makes the simplifying assumption that the surface
deformation is slaved to the auxin concentration field via
the stress-strain relation, which relates stress to the dif-
ference of the total and auxin (growth) induced strains.
The resulting PDE is, for certain coefficient choices, a
gradient flow given by
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where u is the fluctuation in auxin concentration about
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its mean value, t is time, and the system has been scaled
so that the most linearly unstable wavelength is 2π. The
parameter µ captures the amount by which reverse dif-
fusion driven by PIN1 transport overcomes ordinary dif-
fusion and other loss effects. The parameter β measures
how auxin concentration depends on PIN1 distribution.
We study solutions of (1) in geometries defined by sur-

faces of revolution. In this Letter we focus on a planar
disc geometry, as is the case on a sunflower head. Sun-
flowers are formed in two stages. In the first, flowers are
initiated in an annulus surrounding the SAM and, as the
plant grows, the radius of this annulus increases. As a re-
sult, the flower configurations evolve into spiral families.
At a certain point, however, the SAM undergoes a phase
transition and the region on which the seeds form begins
to decrease in radius. During this process, the seeds are
laid down annulus-by-annulus along an annular front of
decreasing radius, and furthermore, each annular pattern
remains at the radius at which it was formed. Thus any
local optimal packing property which the pattern mani-
fests when it is first laid down remains visible.
To simulate this situation, we initiate a spiral pattern

with parastichy numbers M,N (the parastichies in the
last set of flowers to be laid down in the first phase which
sets the outer boundary condition for the seed phase) in
an annulus on the outer boundary r = M + N of the
disc. The initial conditions are constructed by taking an
approximately hexagonal (three-mode) small amplitude
solution of (1) in that region and propagating it on a
cylinder of that radius until it reaches a stable nonlinear
fixed point. We then use (1) to propagate this pattern
initiated in an annular region of the outer boundary into
the interior r < M + N in which the unstable solution
u = 0 is the initial field.

RESULTS

In order to classify and understand the pattern that
emerges, we decompose the final fixed-time signal u(r, θ)
into circumferential modes and write it in terms of the
amplitude and radial phase of each mode as

u(r, θ) =
∑

j

amj
(r) exp

(

i(φmj
(r) −mjθ)

)

+ (c.c.)

for all integers mj . Define the radial wavenumber by
ℓmj

(r) ≡ −φ′

mj
(r). Then, from the sets {amj

(r)} and
{ℓmj

(r)} we deduce the local structure (in r) of the
signal. We find that for any choice of initiating inte-
gers M,N , the subsequent final signal has its princi-
pal support on that subset of circumferential wavenum-
bers N,M,N − M, 2M − N, 2N − 3M, . . . generated
by the Fibonacci rule. Here we show the results for
M = 89, N = 144 but in [10] display the correspond-
ing results for other pairs including M = 47, N = 76
which generates the Lucas sequence. The results are also
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FIG. 2. The front speed ν, local energy density ǫ and local
packing efficiency η for 8 < r < 144. The vertical axis has
been rescaled to indicate relative variation from the mean
value of each of these quantities.

robust for a large open set of choices for µ, β which result
in pushed fronts. Here we take µ = 0.001, β = 3.

Figure 1 is a pseudocolor plot of u on the inner disc
r < 89 at the time the front has reached r = 13. We
note that the visible parastichy numbers decrease with r,
and that the transitions between alternating hexagonal
and rhombic shapes occur without defects. The radial
wavenumbers are continuous. Earlier analyses [9], us-
ing near-onset amplitude expansions, identified the fixed
points corresponding to these shapes but did not prove
that the pattern in an annulus at one radius evolves
smoothly to that in its neighbor. The PDE simulation
does.

Figure 2 shows two measured quantities alongside the
front speed ν that is selected by (1). The local energy
density ǫ is the energy (2) in a narrow annulus centered
at radius r, scaled by the area of the annulus. The local
packing efficiency η is the area fraction of the annulus
covered by non-overlapping equal discs of maximal ra-
dius centered at the maxima of the signal. We note that
ǫ is minimum at the radii where hexagons dominate and
maximum for rhombi. Conversely, for both η and ν the
situation is reversed, with the former being due to the
fact that hexagons result in better packing than rhombi.
The graphs of ν and η are testable predictions, as the
front in a developing sunflower head can be experimen-
tally followed [11].

Figure 3 reveals that the evolved pattern is dominated
by modes whose circumferential wavenumbers belong to
the set F = {1, 2, 3, 5, 8, 13, 21, 34, . . .} defined by the Fi-
bonacci rule mj+1 = mj+mj−1. The only other nonzero
amplitudes, which have much smaller values, are those
corresponding to second harmonics and those generated
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FIG. 3. The maximum values of the amplitude for all circum-
ferential wavenumbers 8 ≤ m ≤ 89.

by the “irregular” Fibonacci rule mj+1 = mj +mj−2.

Figure 4 shows that the amplitudes {amj
} for {mj} =

F lie on an invariant curve which exactly captures the
self-similar property amj+1

(rϕ) = amj
(r), where ϕ =

(1+
√
5)/2 is the golden number. Note that in any annu-

lus, there are only three or at most four (two dominant,
two subdominant) modes present corresponding to the
observed hexagonal and rhombic states respectively. As
r decreases, the amplitudes of each mode slide continu-
ously along this curve. This result is completely new and
has no analogue in discrete models of phyllotaxis. For
example, suppose that points B, C and D correspond to
amplitudes a21, a13 and a8 respectively. Scaling the ra-
dius by ϕ would yield the same configuration except with
B, C and D corresponding to a13, a8 and a5. We also
confirm that the radial wavenumbers {ℓmj

} for {mj} = F
obey the self-similar property ℓmj+1

(rϕ) = −ℓmj
(r). The

invariant curve is sharp down to values as low as r = 8
with parastichies 3, 5 or down to that radius where the
circular eigenfunctions of the Laplacian can be well ap-
proximated by exp(−i

∫

ℓmj
(r)dr − imjθ) in the limit r

large, mj/r finite. For other choices of starting integers
M,N on the outer boundary, the invariant curve has the
same shape but is shifted by a calculable amount.

Values of {mj} and {ℓmj
} can be used to determine

the positions of the maxima, since they occur where
the phase φmj

(r) − mjθ is an integer multiple of 2π si-
multaneously for all active modes [10]. Because ℓmj

(r)
changes slowly compared to the distance between max-
ima, we may calculate from the radial wavenumbers of
those modes dominant at a particular r the local radial
ρ and angular δ distances between maxima that are laid
down consecutively. In botanical terms, these are called
the plastochrone difference and divergence angle respec-
tively.
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FIG. 4. The invariant amplitude curve for amplitudes {amj
}

with {mj} = F . A movie may be found in the supplemental
material [S2].
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FIG. 5. The values of ρ and δ given by the local approximation
at each radius. The shaded lines are the Van Iterson diagram,
with selected parastichy numbers indicated. Inset is detail of
the data for small ρ.

We are now able to connect our results directly to
the point configurations generated by discrete models of
phyllotaxis [3, 4]. The lattices which are the fixed points
of the discrete dynamical systems describing these “lo-
cally optimal” point configurations have values of (δ, ρ)
which lie on, or near, a branching curve first described by
Van Iterson. We overlay our results on the Van Iterson
diagram in Figure 5, where we observe a remarkable coin-
cidence. The maxima of the pattern formed by a pushed
front governed by (1) coincide almost exactly with those
point configurations of the discrete approach.
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DISCUSSION

To conclude, we address four questions and pose sev-
eral open challenges. First, can we understand why,
starting from a pattern characterized by integers M,N
in the neighborhood of the outer boundary r = M +N ,
only those modes having circumferential wavenumbers
N,M,N − M, 2M − N, 2N − 3M, . . . generated by the
Fibonacci rule dominate the signal? The evidence pro-
vided by the data yields the key clue. Patterns in gra-
dient flows choose configurations with energetically pre-
ferred length scales. In Figure 6, we draw the paths
followed by all wavevectors as r decreases to r = 8.
Only those circumferential wavenumbers generated by
the Fibonacci rule approach the energetically preferred
wavenumber k0, here 1.11, close to, but a nonlinear modi-
fication of, the linearly preferred value of unity. The fact
that the Fibonacci modes trace the same path reflects
the self-similar property mentioned earlier. Moreover,
as the pattern moves inward, the next dominant mode
in the sequence is principally generated by quadratic
interactions reflecting the sign reversal broken symme-
try. Effectively this means the corresponding wavevectors
add pairwise. As r decreases, the successively generated
modes kN−M ,k2M−N ,k2N−3M , . . . move toward the pre-
ferred wavenumber k0. Their corresponding amplitudes,
the pattern order parameters, are therefore dominant.
Second, why do Fibonacci patterns consist of a combi-
nation of hexagons? In planar geometries, hexagonal
configurations dominate because at every location, the
quadratic interaction of two modes exp(ikj ·x), j = 1, 2,
|kj | = k0, 120

◦ apart in angle, generates a mode with
wavevector k1 + k2 which also lies on |k| = k0. Plant
patterns do their best to be hexagonal. But because they
are laid down, annulus by annulus, by inwardly or out-
wardly moving fronts, the hexagonal pattern will only
fit the circumference at certain radii. In between, only
two wavevectors can be close to |k| = k0 and this gives
rise to rhombic structures. In the supplemental material,
the movie [S3] shows the evolution of the wavevectors
k5,k8,k13,k21, . . . alternating between hexagonal and
rhombic structures. Third, why pushed fronts? They are
important because the front characteristics are dictated
by the pattern behind the front. Bias from the pattern in
the neighboring annulus where the pattern has just been
laid down affects the choice of (as it turns out weakly un-
stable) fixed points corresponding to rhombi which have
strongly attracting stable manifolds and weak repelling
ones. They also synchronize the front speed of the several
modes (three or two) involved in the pattern at any annu-
lus. If the front were pulled, then each of these modes will
propagate at a speed depending principally on its radial
wavenumber. The pattern would lose synchrony. Fourth,
we address the nature of the fixed point which represents
the Fibonacci pattern shown in Figure 1. When the re-
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FIG. 6. The locus of wavevectors for active Fibonacci modes,
with arrows indicating the direction of motion as r decre-
ses. The locus of wavevectors for irregular Fibonacci modes
is shaded. The dashed semicircle indicates the energetically
preferred wavenumber.

gion is large enough, the local geometry looks planar and
the system should relax to planar hexagonal patches with
defects. Careful long time simulations show that the Fi-
bonacci pattern is long, but not infinitely long, lived. For
a case shown in the supplemental material [S3], as the
front evolves along the stable manifold of the Fibonacci
pattern, the energy (2) decreases 1890 units in 75 time
units. The pattern remains nearly stationary for another
250 time units, after which the energy has only decreased
2 additional units. Then we see a further decrease which
is manifested by reorganization of the maxima and even-
tually the appearance of defects in the rhombic regions
which are the least optimally packed. This is consis-
tent with our observations when we evolve the pattern
on a cylinder of fixed radius. The spiral hexagonal solu-
tions are stable. The rhombic solutions are susceptible
to Eckhaus-like instabilities. Thus, while Fibonacci pat-
terns would seem to be universal in situations where the
pattern is laid down annulus-by-annulus, they are in fact
long lived transients.
We end this Letter with several challenges. Will the

coincidence of the maxima of a pushed pattern-forming
front and that point configuration generated by locally
optimal packing algorithms be still valid in three dimen-
sions? Can one associate a corresponding pattern form-
ing system with every optimal packing challenge? It is
interesting that a similar connection has been reported in
another context [12]. Finally, we ask: how might one be
led to anticipate from a priori reasoning that the pushed
pattern front solutions of (1) have so many invariants
and self similar properties when there is no obvious sim-
ple scaling transformation of the original equation (1)?
This work was supported by NSF grant DMS 0202440.
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Acad. Sci. USA 103, 1633 (2006).

[9] A. C. Newell, P. D. Shipman and Z. Sun, J. Theor. Biol.
251, 421 (2008); A. C. Newell and P. D. Shipman, Anal-
ysis and Applications 6, 383 (2008).

[10] A. C. Newell and M. Pennybacker, Procedia IUTAM
(2013), To Be Published.

[11] S. Hotton, V. Johnson, J. Wilbarger, K. Zwieniecki,
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[S1] See supplemental material at [URL] for a movie of the
evolution of (1) on the disc r < 89.

[S2] See supplemental material at [URL] for a movie of the
amplitudes {amj

(r)} for {mj} = F moving over the in-
variant curve.

[S3] See supplemental material at [URL] for a movie of the
wavevector motion as r decreases.

[S3] See supplemental material at [URL] for a graph of the
dissipation rate −dE/dt as the pattern evolves on the
annulus 55 < r < 89.


