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Cooperativity arising from local interactions in equilibrium receptor systems provides gain, but
does not increase sensory performance, as measured by the signal-to-noise ratio (SNR) due to a
fundamental tradeoff between gain and intrinsic noise. Here we allow sensing to be a nonequilibrium
process and show that energy dissipation cannot circumvent the fundamental tradeoff, so that SNR is
still optimal for independent receptors. For systems requiring high gain, nonequilibrium 2D-coupled
receptors maximize SNR, revealing a new design principle for biological sensors.

Biological systems generally operate out of equilib-
rium, using free-energy dissipation to drive metabolic
reactions, perform mechanical work via molecular mo-
tors, communicate over large distances via action poten-
tials, and much more. In cellular information process-
ing, free-energy dissipation plays essential roles in adap-
tation [1], time-averaging [2], and the sensitivity of chem-
ical switches [3], and can overcome equilibrium physical
limits to performance [4, 5]. The best-known example of
the latter is kinetic proofreading [4], in which the speci-
ficity of interaction between an enzyme and two compet-
ing substrates can exceed the equilibrium limit set by the
ratio of their binding affinities. Previously, we identified
a tradeoff between gain and intrinsic noise for equilibrium
locally coupled receptor systems, limiting their ability to
sense weak signals, as measured by the signal-to-noise ra-
tio (SNR) [6]. Can free-energy dissipation also help cir-
cumvent this tradeoff and thereby increase sensory per-
formance?

In what follows, we answer this question generally for
1D- and 2D-coupled receptor systems by optimizing the
SNR over the full, nonequilibrium parameter space of
these systems, subject only to constraints of lattice sym-
metry and locality of interactions. Compared to equilib-
rium, these systems gain additional parameters related to
cyclic fluxes, which enable novel behavior. Our main re-
sults are: (a) even for nonequilibrium the SNR is optimal
for independent receptors compared to coupled receptors,
and (b) when gain (and hence cooperativity) is required,
nonequilibrium can improve SNR for 2D-coupled recep-
tors, but not for 1D-coupled receptors. The first result
is an extension of our previous equilibrium observations,
showing that nonequilibrium can at best modestly al-
ter the tradeoff between gain and intrinsic noise due to
interaction-mediated slowing down. To understand the
second, surprising result we map the dynamics of coop-
erative receptors onto simpler 1-step processes, and un-
cover an optimal design principle for biological sensors
with high gain.

A classic problem facing the cell, originally posed by
Berg and Purcell [7], is the estimation of external ligand
concentration via cell-surface receptors in the presence

of stochastic fluctuations. Here, we consider a variant of
this problem motivated by E. coli’s strategy of sensing
small changes in chemotactic ligand concentration using
strongly-coupled chemoreceptors. Following our previous
framework [6], we study the linear response of the average
total activity A ∈ [0, N ] ofN coupled receptors to a small
relative change in ligand concentration ∆ log([L]), time-
averaged over a period τavg (e.g. set by the turnover time
of the response regulator CheY-P in E. coli) that is long.
The sensing performance of the cell is governed by the
signal-to-noise ratio per receptor [6]

SNR(τavg) ≡
(∆A)2

Nσ2(τavg)
, (1)

where ∆A ∼ ∆ log([L]) is the resulting change in average
activity and σ2(τavg) is the long-time-averaged variance
of activity, which decreases as ∼ 1/τavg as τavg → ∞.
We model receptor cooperativity using a general Ising-

type framework with local receptor-receptor interactions.
By varying the coupling strength J , our model encom-
passes independent receptors (J = 0), receptors near a
critical point (intermediate J ≈ Jc), as well as allosteric
Monod-Wyman-Changeaux (MWC) receptors [8] (large
J). This last regime has had much success explaining
steady-state signal amplification by bacterial chemore-
ceptors. Importantly, finite J intrinsically slows down
the rate of receptor switching, thereby limiting noise re-
duction via time-averaging [6]. Indeed, this slowing down
is most dramatic in the strongly-coupled (large J) limit
and corresponds to the very slow switching of a ferro-
magnet below the transition temperature – a process
generally considered too slow to be relevant for mag-
nets, but required for signaling by MWC systems. The
previous successful applications of the MWC model to
bacterial chemoreceptors motivate our question whether
nonequilibrium can counteract the slowing down of re-
ceptor switching and increase sensory performance.
Specifically, we consider four-state receptors, which

can bind/unbind ligand with rates {k} and switch con-
formations between active and inactive states with rates
{w}, as shown schematically in Fig. 1(A). As allosteric
coupling between receptors is mediated via the conforma-
tional degrees-of-freedom as opposed to the occupancy
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FIG. 1. Single receptor. (A) Schematic diagram of in-
terconversion among the four states of a single receptor:
inactive/unbound, inactive/bound, active/bound, and ac-
tive/unbound. (B) In the limit of fast ligand binding and
unbinding, the receptor dynamics reduces to switching be-
tween two states, active and inactive.

of binding pockets, we let the switching rates {w} de-
pend on the conformation/activity (but not the occu-
pancy) of neighboring receptors, while keeping the bind-
ing/unbinding rates {k} independent of neighboring re-
ceptors. Conformational switching rates {w} (≤ 104/s
for large-scale rearrangements [9]) are typically slower
than the binding/unbinding rates {k} (≈ 105/s for bac-
terial chemoreceptors [10]), and, therefore, many individ-
ual binding/unbinding events contribute to an effective
field f that biases receptor activity via the differences in
ligand affinity between the active and inactive states. In
this fast binding limit, the dynamics of four-state recep-
tors can be reduced to that of effective two-state recep-
tors, as shown schematically in Fig. 1(B), with changes
in ligand concentration implying changes in the field f .
Consequently, we can write the signal ∆A in Eq. (1) as

∆A =
1

4
R∆f, (2)

where we define the response R ≡ 4dA/df and the gain
R/N ∈ [1, N ] is the amplification of changes in activ-
ity relative to independent receptors due to receptor-
receptor interactions. In what follows, we deal exclu-
sively with coupled two-state receptors and optimize
SNR/[τavg(∆f)2] to focus on the benefits of nonequilib-
rium for receptor cooperativity [11]. (For a full discussion
of the role of nonequilibrium in determining the sensitiv-
ity of the four-state receptor, see [12].)
The behavior of the coupled two-state receptor system

is completely determined by the conformational switch-
ing rates {w}, and thus we seek to optimize these rates to
maximize SNR, without imposing the equilibrium con-
straint of detailed balance. As a simple multiplicative
increase of all rates can trivially decrease the correlation
time, thereby decreasing noise and increasing SNR, we
constrain the sum of forward and backward rates for con-
formational switching to be w++w− = α, where α is the
intrinsic switching rate (with units of inverse time) [13].

1D Neighbors ∆ǫ

++ −4J + f + γf2
−+ f
−− 4J + f + γf2

2D Neighbors ∆ǫ

++++ −8J + f + γf4
−+++ −4J − γJ + f + γf3
−−++ f
−−−+ 4J + γJ + f + γf3
−−−− 8J + f + γf4

TABLE I. Energy change ∆ǫ upon switching conformation
from inactive to active with a given configuration of nearest
neighbors.

In this case, the rates {w} can be expressed in the form
of heat-bath kinetics

w± =
α

1 + e±∆ǫ
, (3)

where ∆ǫ is an effective energy change upon switching
conformation from inactive to active [14].
1D receptors. We first consider a 1D chain of N recep-

tors. For the 1D-chain, there is only one nonequilibrium
degree-of-freedom γf2 ≡ ∆G/2, which we define in terms
of the thermodynamic driving force ∆G of the 4-cycle
shown in Fig. 2(A): For any cycle in a nonequilibrium
steady-state system, the thermodynamic driving force
∆G is related to the ratio of the cycle fluxes, jCW/jCCW,
in the clockwise versus counterclockwise directions, or
equivalently, the ratio of the product of rate constants
going clockwise around the loop to that going counter-
clockwise, according to [15, 16]

e−∆G =
jCW

jCCW

=
w1w2w3w4

w−1w−2w−3w−4

, (4)

In equilibrium, these products are equal so that ∆G = 0.
Therefore, the ∆G’s for cycles in reaction space provide
a useful basis for parameterization of the nonequilibrium
behavior. The energy dissipation rate attributable to a
given cycle is the product of ∆G and the net cycle flux
jCW − jCCW (in analogy to power being the product of
voltage and current in electrical circuits [15]).
The switching rates {w} from Eq. (3) are parameter-

ized in Table I in terms of γf2 and the equilibrium Ising
parameters [17]: the coupling strength J and the field f .
The nonequilibrium parameter γf2 behaves as an addi-
tional field present only when nearest neighbors match
each other’s activity. As expected, the model reduces in
equilibrium (γf2 = 0) to the 1D Ising model with heat
bath kinetics [17].
For a 1D-chain with N = 9, we globally searched the

J, f, γf2 parameter space to maximize the SNR numer-
ically utilizing the nonequilibrium FDT [12, 18]. We
found that SNR is globally optimal for independent re-
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FIG. 2. 1D- and 2D-coupled receptors. (A) Schematic
diagram of 4-state cycle for a chain of 1D-coupled receptors.
White-up and black-down arrows denote active and inactive
receptors, respectively. Optimal SNR/[τavg(∆f)2] as a func-
tion of gain R/N for (B) 1D- and (C) 2D-coupled receptors
for equilibrium (black) and nonequilibrium (red N = 9 and
blue N = 25). (D) SNR/[τavg(∆f)2] as a function of linear

system size N1/2 for gain R/N = 5 for equilibrium (black)
and nonequilibrium with γJ = −0.5 (red). Error bars show
standard errors of the mean and curves are exponential fits.
The inset shows the residuals from the fits.

ceptors, as shown in Fig. 2(B). Moreover, even for a spec-
ified gain, nonequilibrium offers no advantage.

2D receptors. Can nonequilibrium improve SNR in
higher dimensions? For a 2D square lattice with nearest-
neighbor interactions and four-fold symmetry [19], there
are three nonequilibrium degrees-of-freedom, which we
define as γf3, γf4, and γJ . As in 1D, we define these
nonequilibrium parameters in terms of the driving forces
for 2D versions of the cycle shown in Fig. 2(A) [12]. The
2D switching rates {w} from Eq. (3) are given in Table I.
Like γf2 of the 1D model, the nonequilibrium parame-
ters γf3 and γf4 behave as additional fields specific for
the states with three and four activity-matched nearest
neighbors, respectively. The third nonequilibrium pa-
rameter γJ behaves as an additional coupling strength
for states with exactly three matched nearest neighbors.

For 2D receptors, a global search of the 5-dimensional
J, f, γf3, γf4, γJ parameter space reveals, once again,
that SNR is maximal for independent equilibrium recep-
tors. However, unlike 1D, for a specified gain R/N >
1, nonequilibrium does increase the SNR relative to
nonequilibrium, as shown in Fig. 2(C), via an “antifer-
romagnetic” pseudo-coupling γJ < 0. Though modest,
this improvement is not simply a finite-size effect and
persists in the limit N → ∞, as shown in Fig. 2(D) with
γJ = −0.5 chosen for convenience (since γJ is not opti-
mal this provides a lower bound on the increase in SNR
achievable by nonequilibrium).

Why does nonequilibrium improve SNR for 2D-coupled
receptors (but not 1D-coupled receptors)? For a fixed
gain R/N , optimizing SNR is equivalent to minimiz-
ing the noise σ2(τavg). We find that nonequilibrium
does not decrease the steady-state variance (“snapshot
noise”) [12], and therefore it must decrease the correla-
tion time of the noise τc, making time-averaging more
effective. In the high-gain regime, the steady-state dis-
tribution of activity p(A) is strongly peaked at the fully
active/inactive states and the correlation time is approx-
imately the mean-first-passage-time (MFPT) to switch
from fully inactive/active to half-maximal activity. As
shown in Fig. 3(A), the SNR for nonequilibrium optima
depends linearly on the inverse MFPT as the nonequi-
librium parameter γJ is varied, showing that nonequilib-
rium indeed improves SNR by minimizing MFPT.
Activity as a reaction coordinate. To better understand

how nonequilibrium decreases MFPT at high gain, we
map the dynamics of our coupled receptor systems with
their N -dimensional state space onto a single dimension,
a suitable reaction coordinate, which we take to be the
normalized and symmetrized total activity a ≡ 2A/N−1.
The dynamics then takes the form of an analytically
tractable 1-step process [20], as shown schematically in
the inset to Fig. 3(B). For the forward and backward
rates wn

±, we take the trajectory-averaged transition rates
from simulations of the dynamics in the full state space.
This mapping to a 1-step process preserves the dynam-
ics surprisingly well, specifically capturing the SNR as a
function of gain as shown in Fig. 3(B) for both 1D- and
2D-coupled receptors.
The dynamics of 1-step processes are fully described

by the steady-state probability distribution p(a) and dif-
fusion coefficient D(a) ≡ (wn

+ + wn+1
− )(N∆a)2/2, where

∆a = 2/N is the spacing between states along the reac-
tion coordinate. The relationship between MFPT, p(a),
and D(a) has been calculated in Ref. [20] and in the con-
tinuum N → ∞ limit is

MFPT = N2

∫ 0

−1

da
1

D(a)p(a)

∫ a

−1

da′p(a′). (5)

Using Eq. (5) we can ask what are the optimal p(a) and
D(a) that minimizes MFPT for a certain gain. This
question is only meaningful if the transition rates are
constrained from diverging. For simplicity, we fix the
total sum of transition rates

∑
i(w

i
+ + wi

−) or in the
continuum limit the integral of D(a) to be constant.
The resulting optimal “potential”, − log p(a), is shown
in Fig. 3(C) (dashed curve) and consists of a flat barrier
separating deep wells at the extreme activity states [12].
The deep wells make the first transition out of the fully
active/inactive state rate limiting and ensure high gain.
Subsequently, the flat potential gives a high probability
for a fast direct switch to the opposite activity state. This
mesa-like shape of the potential is also optimal when dif-
fusion is held constant [12].
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Strikingly, the optimal 1-step potential agrees almost
precisely with the shape of the 2D nonequilibrium ef-
fective potential, as shown in Fig. 3(C). Comparison to
the corresponding 2D equilibrium potential shows that
nonequilibrium decreases MFPT by flattening the poten-
tial along the reaction coordinate. This insight also offers
a simple explanation why there is no benefit of nonequi-
librium in 1D: equilibrium 1D-coupled receptors already
have a flat potential (green curve), as switching in 1D in-
volves the unbiased diffusion of a single domain boundary
separating active and inactive receptors.

What dimensionality of coupling yields the highest
SNR, i.e. the fastest MFPT, for a fixed gain? In ad-
dition to the shape of the potential, the magnitude of
the diffusion coefficient D(a) is also important in deter-
mining MFPT. As shown in the inset to Fig. 3(D), 1D-
coupled receptors have strikingly lower diffusion coeffi-
cient than receptors with higher-dimensional coupling.
Diffusion along the reaction coordinate in 1D at high
gain occurs exclusively via switching of one of the two
receptors at the domain boundary. In contrast, multiple
viable switching trajectories are possible in 2D. In the
extreme case of all-to-all coupling, which can in principle
be achieved by long-range interactions or a rapidly dif-
fusable factor, any of the N receptors can always switch,
thereby increasing the diffusion coefficient along the re-
action coordinate. However, all-to-all coupling yields an
unfavorable potential barrier of high curvature, as shown
in Fig. 3(C). Consequently, nonequilibrium 2D-coupled
receptors achieve the fastest switching in the high gain
regime, as shown in Fig. 3(D), because they have the
combined benefits of a relatively flat effective potential
and a large diffusion coefficient.

To summarize, nonequilibrium cannot solve the prob-
lem of interaction-mediated slowing down inherent in co-
operativity achieved via local receptor-receptor interac-
tions. Hence, independent receptors maximize signal-
to-noise ratio (SNR). However, nonequilibrium can in-
crease SNR for a fixed gain by minimizing the mean-
first-passage time (MFPT) of switching between extreme
activity states. More generally, optimizing the tradeoff
between cooperativity and interaction-mediated slowing
down at fixed gain leads to a novel optimal-design prin-
ciple for chemical sensing networks – namely bistable ef-
fective potentials with flat barriers separating deep wells.
For sensing via coupled-receptor systems, we have found
an unexpected near-optimality of nonequilibrium 2D-
coupled receptors, which may offer insight into the or-
ganization of E. coli chemoreceptors.

This work was supported in part by National Science
Foundation Grant PHY-0957573 and by the National In-
stitutes of Health (www.nih.gov) Grant R01 GM082938.
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FIG. 3. SNR, MFPT, and effective potentials at fixed
gain. (A) SNR/[τavg(∆f)2] versus 1/MFPT for 2D-coupled
receptors with N = 25 for gain R/N = 0.7N as γJ is in-
creased from zero (starting at left). (B) SNR/[τavg(∆f)2]
versus normalized gain R/N2 for 1D- and 2D-coupled recep-
tors and their mappings to 1-step processes (dashed lines).
Inset shows schematic of 1-step process with transition prob-
abilities [20]. (C) “Potentials”, − log p(a), as functions of
normalized and symmetrized activity a = 2A/N − 1 for Ising
lattices with N = 25 for gain R/N = 0.7N and the optimal
1-step process (dashed curve). (D) MFPT as a function of
R/N2(=gain/N) for Ising lattices with N = 25. Inset shows
the diffusion coefficients D(a) for gain R/N = 0.7N .
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