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Abstract

Chimera states occur spontaneously in populations of coupled photosensitive chemical oscillators.

Experiments and simulations are carried out on nonlocally coupled oscillators, with the coupling

strength decreasing exponentially with distance. Chimera states with synchronized oscillators,

phase waves, and phase clusters coexisting with unsynchronized oscillators are analyzed. Irregular

motion of the cores of asynchronous oscillators is found in spiral-wave chimeras.
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Common coupling schemes for describing interacting oscillators include global coupling,

where each oscillator is coupled equally to all other oscillators, and local coupling, where

each oscillator is coupled only to its nearest neighbors [1]. Nonlocal coupling schemes, where

each oscillator is coupled to a range of nearby oscillators, lie between the extremes of global

and local coupling [2–9]. The coupling strength in nonlocal coupling typically attenuates

with decreasing oscillator proximity, although it can take on a variety of forms. Nonlocal

coupling is found in natural and synthetic systems, for example, neuronal networks and

arrays of Josephson junctions [4, 10, 11].

In early studies of nonlocal coupling, Kuramoto and co-workers [2, 3] found highly unusual

synchronization dynamics, later called the chimera state [4], which consisted of coexisting

subpopulations of synchronized and unsynchronized oscillators, even though the oscillators

were identical and were coupled to each other in an identical manner. They studied 1D and

2D systems of oscillators in ring [2] and planar [3] configurations, with the coupling strength

decreasing exponentially with distance. In the 2D case, the partitioning of synchronized

and unsynchronized oscillators takes the form of a spiral wave rotating around a region of

unsynchronized oscillators.

Chimera states have been recently studied experimentally by Hagerstrom et al. [12] in

coupled-map lattices (CML) and by Tinsley et al. [13] in populations of chemical oscillators.

The CML experiments [12] were based on a camera-spatial light modulator (SLM) system,

with each oscillator coupled to a range of neighboring oscillators [9]. The chemical oscilla-

tor experiments [13] were based on coupling photosensitive oscillators with a camera-SLM

system and utilized two coupling strengths, following the scheme of Abrams et al. [7].

In this Letter, we report on experimental and computational studies of coupled photo-

sensitive chemical oscillators. We follow a Kuramoto-like nonlocal coupling scheme [2, 3],

with the nearest neighbors having the strongest coupling and the coupling strength for each

successive neighbor falling off exponentially. We report new aspects of chimera behavior, in-

cluding groups of unsynchronized oscillators serving as the source of synchronized 1D phase

waves. Meandering synchronized groups of oscillators in 1D experiments and simulations

provide insights into the meandering asynchronous spiral cores found in 2D simulations with

a realistic model of the coupled chemical oscillators.

Experiments are carried out with the Belousov-Zhabotinky (BZ) reaction [14], where

catalyst particles in catalyst-free reaction mixtures form populations of discrete chemical
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oscillators [13, 15]. The BZ reaction is photosensitive with the Ru(bipy)2+3 catalyst [16],

which, when loaded onto cation-exchange particles, allows manipulation of the phase of

each oscillator with light from an SLM. The gray level Ij of each oscillator is monitored with

a CCD camera, which is then used to calculate the appropriate light perturbation φj from

the SLM according to the coupling relation

φj = φ0 +

j+n
∑

ρ=j−n

K(Iρ(t− τ)− Ij(t)), (1)

where φ0 is the background light intensity [17], τ is a time delay [6] in the feedback from

neighboring oscillator ρ to oscillator j, and j = 1, 2, ..., N . The coupling radius is n (number

of coupled neighbors on each side of oscillator j), and the coupling function is given by

K = K ′exp (−κ |ρ− j|), where K ′ and κ are constants that govern the effective coupling

range of each oscillator.

The experiments are carried out with 40 oscillators in a ring configuration, coupled ac-

cording to Eq. (1). Figure 1 shows an example of typical experimental behavior, where a

snapshot of the phase of each oscillator at t = 1220 s is shown in Fig. 1a. We see a group

of synchronized oscillators with oscillator index j = 9 − 17 and unsynchronized oscillators

with j = 1−8 and j = 30−40. Also shown are oscillators that form a diagonal feature with

j = 18 − 29, which represents a phase wave of synchronized behavior. Video images show

that the wave emanates from a group of unsynchronized oscillators, as discussed below.

Figure 1b shows the phase calculated from the measured gray level as a function of time for

each of the oscillators. The spontaneous appearance of the group of synchronized oscillators

can be seen at t ≈ 300 s. The diagonal wave feature occurs at t ≈ 600 − 1200 s, and, at

t ≈ 1200−1400 s, it transforms into a group of synchronized oscillators that are out of phase

with the original synchronized group. Figure 1c shows the period of each oscillator for two

different times, demonstrating that the simultaneous firing of the synchronized oscillators

gives rise to a shorter oscillatory period than that of the unsynchronized oscillators.

The evolution of the chimera state in terms of the local order parameter R [9], defined

by

R(j, t) =
1

2m

∣

∣

∣

∣

∣

j+m
∑

ρ=j−m

exp(iθ(ρ, t))

∣

∣

∣

∣

∣

, (2)

is shown in Fig. 1d, where j = 1, 2, ..., N , andm is the sampling radius. The high order of the

original group of synchronized oscillators can be seen as well as the region of synchronization
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appearing at t ≈ 1400 s. The remaining unsynchronized oscillators make up the surrounding

regions of low order. Size oscillations of the synchronized group occur as the higher-frequency

oscillators “lap” the unsynchronized oscillators, and neighboring oscillators transiently join

the synchronized group when their phases align.

Many nonlocal coupling experiments were carried out, some with quasi-random distri-

butions of the initial phases and others with special initial conditions. In the first case, a

group of synchronized oscillators typically appeared spontaneously, with different realiza-

tions usually giving rise to different regions of synchronized and unsynchronized oscillators.

In experiments with special initial conditions, a group of synchronized oscillators approx-

imately the size of a spontaneously formed group was produced by using perturbations

in illumination intensity, while the remaining oscillators had a quasi-random distribution

of phases. In these experiments, the region of synchronization typically evolved in time,

either disappearing with another synchronized region appearing or shifting to another re-

gion among the unsynchronized oscillators. The photosensitive chemical oscillators have an

inherent distribution in the oscillatory period (60.0±4.0 s) that arises from the size distribu-

tion of the catalytic particles. The oscillator populations with this distribution allowed full

synchronization of the oscillators in addition to the chimera state for the same conditions,

ensuring that a partially entrained state with synchronized and unsynchronized oscillators

arising from an overly broad frequency distribution did not occur [7, 18].

Simulations of the nonlocally coupled chemical oscillators were carried out using the two-

variable ZBKE model for the BZ reaction [19], modified to describe the photosensitivity

of the Ru(bpy)3+ catalyzed discrete oscillator system [20]: dXj/dt = f(Xj, Zj, qj) + φj/ǫ1,

dZj/dt = g(Xj, Zj, qj)+2φj, where f and g represent the non-photochemical components of

the BZ reaction, and Xj , Zj, and qj are [HBrO2], [Ru(bpy)
3+], and the stoichiometric factor

associated with the jth oscillator. A Gaussian distribution in oscillatory period, reflecting

the experimental period distribution, was realized by using a Gaussian distribution in the

value of qj . The photoexcitatory feedback on oscillator j is φj, calculated according to Eq.

(1), where the gray levels Iρ and Ij are replaced by the catalyst concentrations Zρ and Zj.

Figure 2 shows behavior from a simulation of the nonlocally coupled BZ oscillator system,

where a group of oscillators spontaneously synchronized at t ≈ 2.0× 103 to form a chimera

state of synchronized and unsynchronized oscillators. Figure 2a shows a snapshot of the

phase of each oscillator at t = 1.90× 104. The phase of each oscillator as a function of time
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FIG. 1: Experimental behavior of 40 oscillators coupled according to Eq. (1) in a ring configuration,

with n = 10, κ = 0.5, K ′ = 1, τ = 30 s. The experiment was started with a quasi-random initial

phase distribution of the oscillators. (a) Snapshot showing the phase of each oscillator at t = 1220 s.

(b) Phase of each oscillator as a function of time. (c) Period of each oscillator at t = 900 s (blue

+), 1500 s (red •). (d) Local order parameter R according to Eq. (2) as a function of time, with

m = 3. See Supplemental Material for a video of the phase of each oscillator in (a) as a function

of time.

in Fig. 2b illustrates the stability of the synchronized group, but also illustrates the complex

behavior of the unsynchronized oscillators, which tend to form transient diagonal wave

features as well as transient in-phase or out-of-phase synchronization of a few oscillators.

Figure 2c shows that the period of the synchronized oscillators is significantly shorter than

that of the unsynchronized oscillators, much like the experimental system shown in Fig.

1c. Figure 2d illustrates the evolution of the chimera state according to the local order

parameter R in Eq. (2). We again see features that correspond to size variations of the

synchronized group, although in this example the changes are irregular.

Several different types of chimera behavior were found in our experiments and simula-

tions. The synchronized wave behavior described in Fig. 1, for example, was also found

in simulations, as shown in Fig. 3a. Video images show that the waves are initiated from

a small region of unsynchronized oscillators, with oscillator index j = 30 − 34. On the

right-hand side, the wave travels along the diagonal, j = 35−40, where it continues through
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FIG. 2: Model simulations of 40 coupled BZ oscillators in a ring configuration, with n = 10, κ = 0.4,

K ′ = 6.3× 10−5, τ = 35.0, and φ0 = 1.6× 10−4. The simulation was started with a random initial

phase distribution. (a) Snapshot showing the phase of each oscillator at t = 1.90× 104. (b) Phase

of each oscillator as a function of time. (c) Period of each oscillator at t = 1.85 × 104 (blue +),

1.90×104 (red •). (d) Local order parameter R as a function of time, withm = 3. See Supplemental

Material for a video of the phase of each oscillator in (a) as a function of time.

the periodic boundry to j = 1 − 9. The wave on the left-hand side, j = 24 − 29, travels to

a group of unsynchronized oscillators, j = 10 − 23, corresponding to the collision region of

the two waves. The phase of each oscillator as a function of time shows the persistence of

the wave features, Fig. 3b. This phase wave behavior is likely related to q-twisted states

described in theoretical studies [21]. Complex behavior is again seen in the unsynchronized

oscillators, with small groups becoming transiently synchronized in wave-like structures.

In addition to chimera states with synchronized wave behavior, we also find phase-cluster

chimera states [6], where two or more out-of-phase groups of synchronized oscillators coexist

with unsynchronized oscillators. Figure 3c shows a snapshot of the phase of each oscillator

in an experimental phase-cluster chimera at t = 1206 s. We see two clusters of synchronized

oscillators having the same phase with j = 5− 10 and j = 22− 29 and a third out-of-phase

cluster with j = 33 − 37. The local order parameter R as a function of time in Fig. 3d

shows that these clusters persist, and, interestingly, that the first cluster displays prominent
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FIG. 3: Simulations of phase-wave chimera states (top) and experimental measurements of phase-

cluster chimera states (bottom). (a) Model simulations of 40 coupled BZ oscillators, with n = 10,

κ = 0.4, K ′ = 6.3 × 10−5, τ = 35.0, and φ0 = 1.6 × 10−4. Snapshot shows phase of each oscillator

at t = 1.93×104, where the red lines have been added to guide the eye. The simulation was started

with a random initial phase distribution. (b) Phase of each oscillator in (a) as a function of time.

(c) Measurements showing experimental phase-cluster chimera in 40 coupled BZ oscillators, with

n = 10, κ = 0.8, K ′ = 1.0, and τ = 30.0 s. The experiment was started with a quasi-random initial

phase distribution; the snapshot shows the phase of each oscillator at t = 1206 s. (d) Local order

parameter R of oscillators in (c) as a function of time, with m = 3. See Supplemental Material for

videos of the phase of each oscillator in (a) and (c) as a function of time.

antiphase size oscillations.

Simulations based on the photosensitive BZ oscillator model have also been carried out

in a planar two-dimensional configuration. We use the same nonlocal coupling, with the

separation of the oscillators determined by the Pythagorean distance according to the oscil-

lator indices in the square lattice, which is typically made up of 50×50 oscillators [22]. The

spiral cores of asynchronous oscillators meander in an irregular manner, with the form of

the meandering sensitive to the value of the delay τ . Figures 4a and 4b show snapshots of

pairs of initially symmetrical counter-rotating spirals at t = 3500 for two slightly different

values of τ . A 2D local order parameter can be calculated through generalization of Eq.
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FIG. 4: Simulations of spiral chimera states in populations of BZ oscillators. The system is

composed of 50 × 50 oscillators in a square-lattice configuration, with a coupling radius of n = 4

and fixed boundary conditions. Top images show the phase of each oscillator in the lattice at

t = 3500 for values of delay τ = 4.0 (a) and 3.4 (b). Each simulation is initiated with a pair

of symmetric counter rotating spirals, with τ = 0. The delay is switched on at t = 500 and the

simulation is continued to t = 3500. Images (c) and (d) show the local order parameter R at

t = 3500. The dark blue line shows the trajectory of the minimum in R between t = 700 and 3500.

Parameters: κ = 0.3, K ′ = 1.4× 10−3, and φ0 = 1.1× 10−4. See Supplemental Material for videos

of the evolution of each spiral pair in (a), (b) and the spiral core trajectory as a function of time

in (c), (d).

(2), and the value of R at each point in Figs. 4a and 4b is shown in Figs. 4c and 4d. The

meander of the asynchronous core is tracked by following the minimum in R, and Fig. 4c

illustrates the case in which the asynchronous cores undergo approximately random-walk

behavior. We have observed cases in which the mean-squared displacement is linear with

time, although we also find deviations from this behavior. Figure 4d shows larger irregular

motions of the cores of asynchronous oscillators. The irregular motion in both cases is simi-

lar to that of reaction-diffusion spiral cores in the presence of spatiotemporal noise imposed

on the medium excitability [23].

The irregular meandering behavior arises from the interaction of the core of asynchronous
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oscillators with the spiral wave tip. As the tip rotates, it experiences different asynchronous

oscillators, which, depending on the oscillator phase, cause the tip to grow or contract. The

interaction may occur with more than the outer “boundary” of asynchronous oscillators when

transient phase alignment occurs with the interior oscillators, leading to larger fluctuations

of the spiral tip. Changes in the spiral tip also lead to distortions of the shape of the core

of asynchronous oscillators. Similar complex motion of spiral centers has been reported in

two-dimensional systems of coupled phase-shifted oscillators, with the rigid rotating solution

typically becoming unstable with increasing phase-shift [24].

Our experiments and modeling studies of chimera behavior in 1D ring configurations

provide insights into spiral chimera behavior in 2D. The origin of wave behavior in both 1D

and 2D is a group of asynchronous oscillators. The 1D out-of-phase wave initiation shown

in Fig. 3a is suggestive of a 1D spiral wave and is related to q-twisted states [21]. The size

variations of the groups of synchronized oscillators seen in 1D (Figs. 1d, 2d, and 3d) are

related to the meandering behavior of the spiral core of asynchronous oscillators in 2D.

See Supplemental Material for experimental setup and videos associated with Figs. 1-4.

This material is based on work supported by the National Science Foundation (Grant

No.CHE-1212558).
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