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We present a general protocol for stabilizer operator measurements in a system of N supercon-
ducting qubits. Using the dispersive coupling between the qubits and the field of a resonator as well
as single qubit rotations, we show how to encode the parity of an arbitrary subset of M ≤ N qubits,
onto two quasi-orthogonal coherent states of the resonator. Together with a fast cavity readout,
this enables the efficient measurement of arbitrary stabilizer operators without locality constraints.

PACS numbers: 42.50.Ct,85.25.Am,42.50.Pq,03.67.-a

Several milestones on the road to quantum comput-
ing with superconducting circuits have recently been
reached, such as the experimental violation of Bell’s in-
equality [1] and the demonstration of rudimentary quan-
tum error correction (QEC) [2]. As the resources required
for more complete QEC protocols come within experi-
mental reach, it is desirable to develop a toolbox suffi-
ciently versatile to allow the implementation of a wide
class of codes. Most QEC codes can be described con-
cisely in the stabilizer formalism of Gottesman [3]. In
this framework a QEC code is defined by the subspace
spanned by the eigenstates with eigenvalue +1 of a set of
commuting multi-qubit Pauli operators called stabilizer
operators. Error detection is achieved by measuring the
stabilizer operators of the code; the syndrome of an error
being a sign flip of a subset of these operators. Correction
in turn, can be performed when the syndrome contains
enough information to identify the location and type of
the error. The ability to measure arbitrary multi-qubit
Pauli operators would thus allow a direct realization of
stabilizer QEC codes, including non-local quantum low
density parity check codes [4].

Toric and surface codes [5, 6] defined on two-
dimensional qubit lattices are promising stabilizer codes
with high thresholds for fault-tolerance [7]. However
because the elementary (anyonic) excitations of these
systems can diffuse at no energy cost, quantum mem-
ories built from these codes are thermally unstable [8, 9].
Thermal stability can be obtained by engineering effec-
tive interactions between the anyons [10, 11] or by go-
ing to four dimensions, where deconfinement of anyons
is energetically suppressed [12]. To be physically realiz-
able however, the latter needs to be mapped back onto
a lattice of qubits with dimension D ≤ 3. This mapping
inevitably leads to non-local stabilizer operators, which
one must be able to measure. In this work we take a first
step in this direction and propose a scheme to measure
arbitrary stabilizer operators in a system of supercon-
ducting qubits off-resonantly coupled to a common mode
of a microwave resonator.

Several schemes for parity measurements of supercon-
ducting qubits have recently been proposed [13–15]. The
main advantage of our approach is the ability to se-

lectively address an arbitrary subset of qubits, without
the need for tunable couplings, in contrast to earlier
work [16, 17], and without restrictions on the number
of and distance between physical qubits defining a given
stabilizer operator. We thus extend the superconducting
qubit toolbox with functionality similar to that recently
demonstrated for trapped ions [18].

Central to our proposal is the off-resonant coupling
between a superconducting qubit and a single mode of
a microwave resonator [19] described by the dispersive
HamiltonianHdisp = χσza†a, where σz = |e〉 〈e|−|g〉 〈g|
is the Pauli matrix in the computational basis {|g〉 , |e〉}
of the qubit and a (a†) denotes the photon annihilation
(creation) operator of the cavity mode. This coupling
describes a qubit-state-dependent frequency shift ±χ of
the cavity, or equivalently a photon-number-dependent
frequency shift 2nχ of the qubit. In the weakly dis-
persive regime 2χ ∼ 1/T2, κ, where κ is the bare cav-
ity linewidth and T−1

2 = (2T1)
−1 + Γφ is the qubit co-

herence time composed of relaxation 1/T1 and pure de-
phasing Γφ, this interaction enables a qubit-readout by
measuring the phase-shift of transmitted or reflected mi-
crowaves [19]. In this work, we are interested in the ultra-
strong dispersive regime of well-resolved resonances [20],
where κ, T−1

2 ≪ χ. In this regime, we show how to en-
code the two eigenvalues of an arbitrary multi-qubit Pauli
operator onto quasi-classical oscillations of light that dif-
fer in phase by π.

Although our scheme is applicable to other types of
superconducting qubits, for clarity we will frame our dis-
cussion around the specific case of transmon qubits. A
transmon qubit [21, 22] is formed by a superconducting
dipole-antenna with a Josephson junction at its center
with Josephson energy EJ ≫ EC ≡ e2/(2CΣ), where
CΣ represents the total capacitance between the an-
tenna pads. Neglecting charge-dispersion effects, which
are suppressed exponentially in EJ/EC [21], the low-
energy spectrum of an isolated transmon is well approx-
imated by that of an anharmonic oscillator with fre-
quency ω01 ≈

√
8EJEC − EC and weak anharmonicity

ω01 − ω12 ≈ EC ≪ ω01. In state-of-the-art realizations,
the qubit linewidth 1/T2 is close to being limited by relax-
ation [22–25]. In this work we are interested in a setup
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FIG. 1. (Color online) (a) 2D array of N transmon qubits in
a 3D cavity. The ancilla qubit and the upper cavity are used
for readout/reset and manipulation purposes. Cavity (b) and
qubit (c) spectra in the ultra-strong dispersive regime.

such as depicted in Fig. 1 (a), where N transmons are
coupled dispersively with strength χ to a microwave field
inside a 3D cavity. For simplicity, we here discuss the
case of equal dispersive couplings. In the supplemen-
tal material we show how to cope with the more realistic
case of unequal dispersive shifts. For control and readout
purposes, an ancilla qubit, is further dispersively coupled
to both the high-Q cavity containing the N qubits with
χA ≫ Nχ and to a low-Q (readout) cavity, similar to
the setup used in [26]. We assume that both the an-
cilla qubit and the readout cavity remain in the ground
state, except during readout and manipulation. Thus
omitting, for now, the corresponding degrees of freedom,
we model this system in an appropriately rotating frame
(see supplemental material for details), by the effective
Hamiltonian

H0 = χ
N
∑

i=1

σz
i a

†a−Ka†a†aa . (1)

The transmons are treated here as two-level systems as-
suming their anharmonicity is larger than their linewidth
(i.e. EC > 1/T2). Furthermore, assuming the qubits to
be sufficiently detuned from each other, we neglect the
cavity-mediated qubit-qubit interaction. The latter leads
to frequency shifts of the order of χ2/∆, where ∆ is the
detuning between the two qubits. For the parameters
used below (χ = 5MHz and ∆ ≥ 2GHz), these shifts are
smaller than about 10KHz. The second term on the rhs
of Eq. (1) accounts for the (negative) qubit-induced an-
harmonicity of the cavity [27, 28]. In the weak dispersive
regime, this term can usually be neglected as K ≪ χ.
We find that in the ultra-strong dispersive regime it is
necessary to account for its leading order effect. We next
show how to encode the parity ZSN

=
⊗N

i=1 σ
z
i of an

N -qubit state |ψ〉N onto two quasi-orthogonal coherent
states of the cavity differing in phase by π.

Parity encoding. Suppose the system is initially pre-
pared in the product state |Ψ〉t=0 = |α〉 |ψ〉N , where |α〉 is
a coherent state of the cavity with amplitude α. Making
use of the identity exp[−i(π/2)∑N

i=1 σ
z
i ] = (−i)NZSN

,
one can show that under the action of (1), at time
T = π/(2χ), the state becomes

|Ψ〉T = UK

(

|αN 〉P+
SN

+ |−αN 〉P−
SN

)

|ψ〉N , (2)

where P±
SN

= (11 ± ZSN
)/2 are the projectors onto the

even (+) and odd (−) qubit parity subspaces as measured
by the ±1 eigenvalues of the multi-qubit Pauli operator
ZS

N
and αN = (−i)Nα. Note that the self-Kerr term is

qubit-independent [29] and conserves the photon number
a†a. Because it commutes with the dispersive term, its
effect factors out and is captured in (2) by the unitary
operator UK = exp[iπK/(2χ)a†a†aa]. For weak nonlin-
earity such that πK ≪ χ, the leading order effect of UK

acting on the coherent states |±αN〉 is a rotation of the
mean amplitude by an angle ∆φnl = πn̄K/χ with the
mean photon number n̄ = |α|2. To leading order in K/χ,
the state (2) is thus well approximated by

|Ψ〉T = |α̃N 〉P+
SN

|ψ〉N + |−α̃N 〉P−
SN

|ψ〉N , (3)

with α̃N = αNe
−i∆φnl . The sub-leading order ef-

fect is a damping of the mean amplitude by a factor
exp(−∆φ2nl/(2n̄)) [30]. We emphasize that in the ultra-
strong dispersive regime κ/χ ≪ 1 considered here, pho-
ton decay only weakly damps the amplitude of the co-
herent states in (3) by a factor exp(−κT/2) ≈ 1 −
(π/4)(κ/χ). Ignoring these small effects, we thus see that
the dispersive interaction can be used to encode the par-
ity of the multi-qubit state onto two coherent states of
the cavity differing in phase by π.
Subset selectivity. Typically stabilizer operators are

defined on subsets of qubits. Selectivity to M ≤ N
qubits, labeled by the set SM ⊆ SN = {1, . . . , N}, can
be achieved as follows. Consider the identity

US
M
(t) =

(

⊗

i/∈SM

σx
i

)

USN

( t

2

)(

⊗

i/∈SM

σx
i

)

USN

( t

2

)

, (4)

where US(t) = exp(−itχa†a
∑

i∈S σz
i ). Eq. (4) can be

easily shown using σxσzσx = −σz. Thus, by splitting
the dispersive evolution of all N qubits into two equal
halves and interspersing them with bit-flip operations on
the qubits not in SM , we can effectively echo away the
contribution of the latter to the total “magnetization”
and implement the dispersive evolution US

M
(t) of the

qubits in SM alone. Acting on an initial state of the form
|α〉 |ψ〉N , USM

(T = π/(2χ)) then encodes the subset-
parity ZS

M
=

⊗

i∈S
M

σz
i onto the state of the cavity as

explained above. The case of unequal dispersive shifts is
treated in the supplemental material.
Physically, the initial unconditional cavity displace-

ment and bit-flips can be implemented via fast mi-
crowave pulses (see supplemental material). Because
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of the dispersive interaction, the qubit transition fre-
quency of the i-th qubit splits into a ladder of frequencies
ωn
qi = ω0

qi +2nχ, corresponding to different photon num-
bers in the cavity (Fig. 1 (c)). The latter are Poisson
distributed and peaked around n̄. Hence, to best ap-
proximate an unconditional rotation of the i-th qubit,
the pulse must be centered at the frequency ω0

qi + 2n̄χ

and have a frequency-width large compared with 2
√
n̄ χ.

For |α| ≥ 1/π the duration of such a π-pulse is thus
Tπ ≪ 1/(2

√
n̄χ) ≤ T . Similarly, the initial coherent

state of the cavity |α〉 can be prepared from the vacuum
by driving the cavity at the frequency ωc − χA with a
pulse of area α and a frequency-width large compared
with 2Nχ; the maximal frequency spread of a cavity dis-
persively coupled with strength χ to N qubits (Fig. 1
(b)). Again the duration Td of this pulse is short since
Td ≪ 1/(2Nχ) < T . The total duration of the encod-
ing is thus dominated by the dispersive evolution time
T = π/(2χ), which is independent of N and M .
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FIG. 2. (Color online) (a) Quantum circuit diagram for en-
coding the parity of qubits 2 and 4 (full (blue) lines). Dα

represents the displacement operation, πx a single-qubit π-
pulse and T1/2 a free dispersive evolution of duration π/(4χ).
(b) Numerical simulation of the evolution of the Q-function
of the cavity [30], with an initial qubit state |ψ〉

4
= (|ggge〉+

|ggeg〉 + |eeeg〉)/
√
3. Dissipation from photon loss at a rate

κ/(2π) = 10KHz and qubit decoherence with T1 = T2 = 20µs
are included as well as a finite displacement and π-pulse du-
ration of 1 ns. Other parameters are: α = 2, χ/(2π) = 5MHz
and K/(2π) = 80KHz. The self-Kerr term leads to an addi-
tional phase rotation ∆φnl = 2Kn̄∆t, where ∆t = 50.3 ns is
the total duration of the encoding. Taking this rotation into
account, we obtain a fidelity of F = 98% to the ideal target
state |Ψ〉

ideal
= |α̃2〉P+

{2,4} |ψ〉4 + |−α̃2〉P−
{2,4} |ψ〉4.

As an example, Fig. 2 shows the results of a numer-
ical simulation encoding the parity of M = 2 out of
N = 4 qubits, which accounts for finite (square) pulse
duration, decoherence and qubit-induced cavity nonlin-
earity. For the parameter values given in the caption,
we find a fidelity (overlap with the ideal target state)
of 98%. By applying single-qubit rotations to individual
qubits before and after the encoding one may similarly
encode the parity of an arbitrary weight M Pauli opera-

tor QS
M

=
⊗

i∈S
M

τi, with τi ∈ {σx
i ,σ

y
i ,σ

z
i }.

Parity readout. The encoded state is of the form
|Ψ〉T = |α̃M 〉P+

SM
|ψ〉N + |−α̃M 〉P−

SM
|ψ〉N , where

P±
SM

= (11 ± QSM
)/2 and α̃M = (−i)Me−i∆φnlα. The

overlap between the two cavity states, 〈α̃M | − α̃M 〉 =
exp(−2|α|2), is independent of K and M . For large |α|,
these two states are distinguishable in principle and a
measurement of the cavity state is equivalent to a multi-
qubit parity measurement. A fast readout of the cav-
ity state with Tmeas ≪ 1/κ, may be achieved by low-
ering the Q-factor of the cavity containing the qubits
(κ → κ′ ≫ κ), as recently demonstrated [31]. This Q-
switching adversely affects the lifetime of the qubits via
the Purcell effect. However, the latter is expected to be
weak as long as κ′ ≪ χ. Alternatively, the cavity state
can be mapped onto the ancilla qubit, which can subse-
quently be measured through standard homodyne mea-
surement of the low-Q readout cavity. The mapping is
achieved physically in three steps. First, the high-Q cav-
ity field is displaced unconditionally by α̃M . To a good
approximation, this maps the encoded state onto

Dα̃
M
|Ψ〉T = |2α̃M 〉P+

SM
|ψ〉N + |0〉P−

SM
|ψ〉N . (5)

The second step consists in performing a π-pulse on the
ancilla qubit, which so far was in its ground state, con-
ditioned on the cavity being in the vacuum state. As
first proposed in [32] and demonstrated in [26], this can
be achieved by applying a pulse centered on the bare
ancilla qubit transition frequency, which is narrow in fre-
quency compared with 8n̄χA (the additional factor of
4 is due to the twice as large amplitude of the cavity
state in the first term on the rhs of Eq. (5)). Because
χ
A ≫ Nχ, a pulse duration TA can be chosen such that

1/(2χA) ≪ TA ≪ 1/(2Nχ). For n̄ > 1/4 the first in-
equality guarantees conditionality while the second one
allows us to neglect the dispersive evolution during this
operation. The state then becomes approximately

|2α̃M 〉
(

P+
SM

|ψ〉N
)

|g〉A + |0〉
(

P−
SM

|ψ〉N
)

|e〉A . (6)

In the third and final step, a displacement of −2α̃M

is performed on the cavity conditioned on the ancilla
qubit being in the ground state. This is achieved with a
pulse centered at frequency ωc − χA, with a frequency-
width small compared with 2χA but large compared with
2Nχ. Neglecting again the dispersive evolution during
this step, the state finally becomes

|0〉
[(

P+
SM

|ψ〉N
)

|g〉A +
(

P−
SM

|ψ〉N
)

|e〉A
]

. (7)

Note that the state (7) is now stationary with respect to
the dispersive interaction, there being no photons in the
cavity. Reading out the state of the ancilla qubit amounts
to measuring QSM

. After the measurement, the ancilla
qubit may be reset to the ground state efficiently via the
readout cavity [33].
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Simulated time evolution. The ancilla qubit can also
be used to simulate the “time evolution” exp[−iθQSM

]
under the action of an arbitrary Pauli operator QSM

.
This is useful e.g. for manipulating a logical qubit state
encoded in a stabilizer subspace in which case QSM

is
taken to be a logical qubit Pauli operator. Starting from
the state Eq. (5), this is achieved by adiabatically driv-
ing the ancilla around a closed loop on its Bloch sphere
subtending a solid angle 4θ, conditioned on there being
no photons in the cavity. The component in Eq. (5) with
zero photons then acquires a phase of 2θ (half the solid
angle) and the state becomes

|2α̃M 〉P+
SM

|ψ〉N + e2iθ |0〉P−
SM

|ψ〉N . (8)

Note that χA ≫ Nχ guarantees that the adiabatic condi-
tion wrt χA can be satisfied while still remaining fast wrt
the dispersive time scale 1/(Nχ). In (8) we omitted the
state of the ancilla qubit, since it starts and ends in the
ground state and thus factors out. The cavity is disen-
tangled from the state by applying the encoding protocol
with α replaced by −α̃M . After unconditionally displac-
ing the cavity back to the vacuum, taking into account an
additional nonlinear phase acquired during the decoding,
the N -qubit state finally becomes

P+
SM

|ψ〉N + e2iθP−
SM

|ψ〉N = eiθe−iθQSM |ψ〉N , (9)

which up to an unimportant global phase factor, repre-
sents the action of the desired unitary.
Application. To test the feasibility of the above

protocols, we simulated the preparation of a log-
ical qubit state of the four-qubit erasure channel
code [34]. The stabilizer generators of this code are
S = {Z1Z2, Z3Z4, X1X2X3X4}, where we have switched
to the standard notation Xi and Zi for the Pauli oper-
ators of qubit i. The code-space is spanned by the two
+1 eigenstates of the stabilizer operators:

|±〉 = 1

2
(|gg〉 ± |ee〉)(|gg〉 ± |ee〉). (10)

The logical qubit Pauli operators are Z = X1X2 = X3X4

and X = Z1Z3 = Z2Z4 = Z1Z4 = Z2Z3. Because of the
redundancy of the logical operators, this code protects
a logical qubit state α |+〉 + β |−〉 from the loss (i.e. ar-
bitrary error) of a known qubit [34]. Here we prepare
the logical qubit state |ψ〉 = exp[−i(π/8)X] |+〉 as fol-
lows. (i) We start with the fully polarized four-qubit
state |gggg〉, which is already a +1 eigenstate of the Z
stabilizer operators. (ii) Using the encoding protocol, we
measure the logical Z operator X1X2. If we obtain −1,
we apply Z1. (iii) We measure the operator X3X4. If
we obtain −1 we apply Z3. (iv) We reset the cavity to
the vacuum. These four steps prepare the logical state
|+〉. We next use the ancilla (with χA = 10Nχ) to imple-
ment the rotation as described above with QS4

= X and
θ = π/8. Fig. 3 shows the obtained fidelity to the ideal
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FIG. 3. (Color online) Fidelity of the prepared state to
exp[−i(π/8)X ] |+〉. The (red) dashed curve represents the
boundary of the inequality K ≥ χ2/(4αq) which relates the
self-Kerr K with the dispersive shift χ and the single-qubit
anharmonicity αq [27]. Here αq/(2π) = 200MHz.

target state exp[−i(π/8)X] |+〉 as a function of χ and K
in units of κ/(2π) = 10KHz and for T1 = T2 = 20µs.
The total duration T of the state preparation is shown
on the upper x-axis in units of 1/κ. Focusing on the line
K = 0, when χ is small T is large and dominated by
the dispersive evolutions and the fidelity is limited by a
combination of qubit decoherence, photon loss and faulty
conditional ancilla rotation. The fidelity then increases
with increasing χ, which reduces the preparation time T
and hence the effects of decoherence and improves the
fidelity of the conditional ancilla rotation. It reaches a
maximum in a regime where both conditional and un-
conditional operations can be performed with high fi-
delity. A further increase in χ degrades the uncondi-
tional cavity displacement and qubit rotations (a 1 ns
pulse corresponds to a width of ∼ 160MHz) and the
fidelity drops. The cavity nonlinearity K and the dis-
persive shift χ are in fact not independent, but rather
related via the single-qubit anharmonicity αq, by the in-
equality K ≥ χ2/(4αq) [27], which is shown as a dashed
(red) curve in Fig. 3 for αq/(2π) = 200MHz.

In conclusion, we proposed a protocol to measure sta-
bilizer operators defined on an arbitrary subset of super-
conducting qubits in the ultra-strong dispersive regime
of cQED. Challenges for the future will be to extend the
present protocol to carry out multiple stabilizer measure-
ments in parallel and to make it scalable perhaps by us-
ing multiple cavities as in [14] and an efficient encoding
of multiple bits of information onto the photonic Hilbert
space [32].

We thank L. Jiang, M. Mirrahimi, D. Poulin, M. De-
voret and R. Schoelkopf for discussions. The simulations
were coded in Python using the QuTip library [35]. This
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