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We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for open-shell nuclei using a
multi-reference formalism based on a generalized Wick theorem introduced in quantum chemistry. The re-
sulting multi-reference IM-SRG (MR-IM-SRG) is used to perform the firstab initio study of all even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the protonto the neutron drip lines. We obtain an excellent
reproduction of experimental ground-state energies with quantified uncertainties, which is validated by results
from the Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The agreement between
conceptually different many-body approaches and experiment highlights the predictive power of current chi-
ral two- and three-nucleon interactions, and establishes the MR-IM-SRG as a promising new tool forab initio
calculations of medium-mass nuclei far from shell closures.

PACS numbers: 13.75.Cs,21.30.-x,21.45.Ff,21.60.De,05.10.Cc

Introduction. Neutron-rich nuclei are the focus of the ex-
perimental program of current and next-generation rare iso-
tope facilities. Emerging phenomena such as halos or neutron
skins make these nuclei ideal laboratories to study nuclearin-
teractions in delicately tuned scenarios, and motivate theuse
of ab initio many-body calculations to provide their descrip-
tion from first principles. Such calculations make it possible
to confront modern nuclear Hamiltonians from chiral effec-
tive field theory (EFT) [1, 2] with a wealth of data beyond
few-body systems.

For light nuclei, the ab initio No-Core Shell Model
(NCSM) [3, 4] provides the capabilities for studies of isotopic
chains, but for medium-mass nuclei this approach is not feasi-
ble because of its large computational effort. Many-body tech-
niques with more modest computational scaling, such as the
Coupled Cluster (CC) [5–7] or Self-Consistent Green’s Func-
tion methods [8, 9], can be used to probe nuclei in the vicin-
ity of shell closures, but are not applicable for open-shellnu-
clei far from shell closures. For such nuclei, a self-consistent
Gor’kov formalism was developed recently [10, 11], but this
approach is currently limited to second-order terms in the
many-body perturbation expansion.

In this Letter, we describe the extension of the In-Medium
Similarity Renormalization Group (IM-SRG) framework of
Refs. [12, 13] to open-shell nuclei by means of a multi-
reference formulation. We use the resulting MR-IM-SRG and
two other many-body approaches, the Importance-Truncated
No-Core Shell Model (IT-NCSM) and the CC method, to per-
form the firstab initio study of all even oxygen isotopes with
chiral NN+3N Hamiltonians.

Formalism. The main tools for the derivation of the MR-
IM-SRG are the generalized normal-ordering and Wick theo-
rem by Kutzelnigg and Mukherjee [14]. We write a string of
creation and annihilation operators in tensorial form,

A1...k
l...N ≡ a†1 . . . a

†
k
aN . . . al , (1)

and expand it in terms of components that are normal-ordered
with respect to an arbitrary reference state|Φ〉 [14–16]. We
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where: . : indicates normal-ordering, and we have introduced
irreducible one- and two-body density matricesλ(1) andλ(2):

λ1
2 ≡ 〈Φ|A1

2 |Φ〉 , λ12
34 ≡ 〈Φ|A12

34 |Φ〉 − λ1
2λ

3
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3λ
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The particle rank of the irreducible density matrices is ev-
ident from the single-particle indices. Generally, up ton-
body irreducible density matricesλ(n) appear in the expan-
sion of ann-body operator, which are defined recursively in
terms of density matrices of lower rank and encode informa-
tion aboutn-body correlations in the reference state [14]. For
an independent-particle state, all matrices exceptλ(1) vanish.

Products of normal-ordered operators can be expanded by
means of a generalized Wick theorem (GWT), e.g.,

:A12
56 ::A34

78 : = :A1234
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7 :A234
568 : −ξ35 :A124
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(
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7λ

2
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)

:A34
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57 :A34
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whereξ12 ≡ λ1
2 − δ12 [16]. In addition to simple contractions

containingλ(1) andξ(1) which also occur in the standard Wick
theorem, we obtain terms involvingλ(2), . . . , λ(n). Each den-
sity matrix must have at least one index from each of the op-
erators in the product — other terms vanish due to the initial
normal-ordering (2) [14]. In the following, we work in natural
orbitals, i.e., the eigenbasis ofλ(1), where

λ1
2 = n1δ

1
2 , ξ12 = −n̄1δ

1
2 ≡ −(1− n1)δ

1
2 , (5)

and the eigenvalues are the occupation numbers0 ≤ na ≤ 1.
We now consider the IM-SRG operator flow equation

d

ds
H(s) = [η(s), H(s)] . (6)

By integrating Eq. (6), we generate a continuous unitary trans-
formation that decouples the ground-state of the Hamiltonian
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H(s) from excitations, and solve the many-body problem
[12, 13]. Suppressing the flow parameters for brevity, we
apply the generalized normal-ordering toH and the generator
η, and evaluate the commutator using the GWT to obtain the
MR-IM-SRG flow equations:
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whereE = 〈Φ|H |Φ〉, and the one- and two-body parts ofH ,
denoted byf andΓ, contain in-medium contributions from the
3N interaction because of the normal ordering [12, 13]. The
symbol[η ↔ f,Γ] in Eq. (8) indicates an interchange of the
one- and two-body parts ofη andH . To close the system of
flow equations (7)–(9), we truncate three-body operators [13]
and a term containingλ(3) in the energy flow equation (7). We
refer to this truncation as MR-IM-SRG(2).

By integrating Eqs. (7)–(9), we perform a non-perturbative
resummation of the Many-Body Perturbation series [12, 13].
The flowing two-body vertex is RG-improved by Eq. (9), e.g.,
with contributions from generalized ladder (3rd line) and ring
diagrams (4th line), which in turn generate corrections to the
ground-state energy whenΓ is inserted in Eq. (7) [13].

As our default choice for the generator, we use the ansatz
of White [13, 17]. The required matrix elements of the Hamil-
tonian, such as〈Φ|H :A12

34 : |Φ〉, which couple the reference
state to excitations, or〈Φ| :A34

12 : H :A12
34 : |Φ〉, which enter

the energy denominators, can be evaluated using the general-
ized normal ordering. This yields
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where
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The dots in Eqs. (10) and (11) indicate terms that are linear in
λ(2). Terms containingλ(n≥3) or nonlinear powers ofλ(2) are
truncated.

In cases where the flow stalls due to small energy denom-
inators, we use Wegner’s generatorη = [H,Hod] as a fall-
back, defining the one- and two-body parts of the off-diagonal
HamiltonianHod as

(fod)12 = n̄1n2f
1
2 + [1 ↔ 2] ,

(Γod)1234 = n̄1n̄2n3n4Γ
12
34 + [(12) ↔ (34)] . (13)

This generator is free of numerical instabilities but less ef-
ficient because the flow equations become stiff [12, 13]. In
the limit of a single Slater determinant reference state, both
generators reduce to the forms used for closed-shell nucleiin
[12, 13].

We obtain a reference state for each nucleus by solving
the Hartree-Fock-Bogoliubov (HFB) equations, and project-
ing the resulting state on proton and neutron number,|Φ〉 =
PNPZ |HFB〉 [18]. This choice allows us to enforce spheri-
cal symmetry in calculations for even nuclei [19], and greatly
increases the single-particle basis sizes we can treat. The
natural-orbital basis of|Φ〉 is the usual canonical basis of the
HFB vacuum, allowing us to use analytic expressions for the
density matrices [20].

The MR-IM-SRG method can be extended systematically
by improving the truncation scheme: One would include
3, . . . , A-body operators when Eq. (6) is expanded in normal-
ordered components, as well as additional terms involving ir-
reducible density matrices. While the number of flow equa-
tions is the same as in the single-reference case, their com-
plexity grows much more rapidly due to additional terms from
the generalized normal ordering [12–14].

Calculation Details. Reference states for the MR-IM-
SRG calculation are obtained by solving the HFB equations in
15 major harmonic-oscillator (HO) shells, and projecting the
resulting state on good proton and neutron numbers [13, 21].
For the 3N interaction, the sum of the HO energy quantum
numbers of a 3N basis state is limited bye1 + e2 + e3 ≤
E3max = 14, as discussed in [13, 22]. ReducingE3max from
14 to 12 changes the MR-IM-SRG(2) ground-state energies
for oxygen isotopes by less than 1% for the Hamiltonians used
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FIG. 1. (Color online) Convergence of the MR-IM-SRG(2) ground-
state energies of18O and26Owith respect to the single-particle basis
sizeemax, for the NN+3N-full Hamiltonian atλSRG = 2.0 fm−1.

in this work. The intrinsic NN+3N Hamiltonian is normal-
ordered with respect to the reference state, and the residual
normal-ordered 3N interaction term is discarded, leading to
the normal-ordered two-body approximation (NO2B), which
is found to overestimate oxygen binding energies by about 1%
[13, 22].

In this Letter, we use the same nuclear Hamiltonians as in
our recent IM-SRG and CC studies [13, 22, 23]: The NN in-
teraction is the chiral N3LO interaction by Entem and Mach-
leidt, with cutoffΛNN = 500 MeV/c [2, 24]. Our standard
three-body Hamiltonian is a local N2LO 3N interaction with
initial cutoff Λ3N = 400 MeV/c. The resolution scale of
the Hamiltonian is lowered toλSRG = 1.88, . . . , 2.24 fm−1

by means of an SRG evolution in three-body space [25–27].
Hamiltonians which only contain SRG-induced 3N forces are
referred to as NN+3N-induced, those also containing an initial
3N interaction as NN+3N-full.

In Fig. 1, we illustrate the convergence of the MR-IM-
SRG(2) ground-state energies for18O and26O with respect to
the single-particle basis size. At the optimal~Ω, the change
in the ground-state energy is 0.1% when we increase the basis
from emax = 12 to 14. This rapid convergence is representa-
tive for all Hamiltonians used in this work.

Results. In Fig. 2, we show MR-IM-SRG(2) ground-state
energies of the even oxygen isotopes for NN+3N-full Hamil-
tonians with initial cutoffsΛ3N = 350, 400 and450 MeV/c.
For the 3N low-energy constants, we use a fixedcD = −0.2,
andcE = 0.205, 0.098, and−0.016, respectively, which are
fit to the4He binding energy in NCSM calculations [23, 27].
For the NN+3N-full Hamiltonian withΛ3N = 400 MeV/c,
we achieve an excellent reproduction of experimental data all
the way to the neutron drip line at24O [29], with deviations
of 1-2%. Recent experiments place the26O ground-state res-
onance atEx . 150 keV above the24O ground-state energy
[30, 31]. We slightly overestimate this energy in our calcu-
lation because the HO basis expansion of our single-particle
wave functions is ill-suited to the description of resonances
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FIG. 2. (Color online) Dependence of the MR-IM-SRG(2) oxygen
ground-state energies for the NN+3N-full Hamiltonian on the res-
olution scale and the initial cutoffΛ3N. For eachΛ3N, the band is
obtained by varyingλSRG from 2.24 (open symbols) to1.88 fm−1

(closed symbols). Experimental values are indicated by black bars
[28, 29].

and other continuum states. The inset in Fig. 2 illustrates that
the correct drip-line systematics is independent ofλSRG in the
studied range and also robust against variations of the cutoff
Λ3N. This suggests that the long-range part of the two-pion ex-
change (2PE) 3N interaction, which remains unchanged as we
lowerΛ3N, is key to obtaining the proper isotopic trends. The
2PE contribution has significant spin-orbit and tensor terms,
and is therefore important for the evolution of the shell struc-
ture along the isotopic chain, as also demonstrated in other
studies, e.g. [32].

Let us now discuss the effect of varying the resolution scale.
As discussed in [13, 22], theλSRG-dependence of our energies
is the net result of omitted induced 4N interactions, theE3max

cut, and the MR-IM-SRG(2) truncation of the many-body ex-
pansion, while the effect of the NO2B approximation is found
to be independent ofλSRG.

For Λ3N = 350 MeV/c we do not expect significant in-
duced 4N interactions [27]. AsλSRG is reduced, we cap-
ture additional repulsive 3N strength in matrix elements with
e1 + e2 + e3 ≤ E3max. We also speed up the convergence
of the many-body expansion and reduce the error due to the
MR-IM-SRG(2) truncation, but for the resolution scales con-
sidered here, this effect is already saturated. In total, wefind
a slight artificial increase of the ground-state energies aswe
lowerλSRG [13].

For our standard choiceΛ3N = 400 MeV/c, effects from
omitted 4N interactions, theE3max cut, and the many-body
truncation cancel, and theλSRG-dependence of the energies
in Fig. 2 is extremely weak [13]. The omission of 4N in-
teractions becomes the dominant source of uncertainty as we
increaseΛ3N to 450 MeV/c, resulting in an enhancedλSRG-
dependence of the ground-state energies of the heavier oxy-
gen isotopes. This is consistent with the even strongerλSRG-
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FIG. 3. (Color online) IT-NCSM ground-state energies of theeven
oxygen isotopes for the NN+3N-induced (a) and NN+3N-full Hamil-
tonians (b) atλSRG = 1.88 fm−1. Solid lines indicate the energy
extrapolation based onNmax = 8 − 12 data, dotted lines guide the
eye for smallerNmax. Uncertainties due to the importance truncation
are smaller than the symbols used to represent the data. All energies
are obtained at optimal~Ω.

dependence forΛ3N = 500 MeV/c observed in Refs. [23, 26,
27].

To assess the quality of our MR-IM-SRG(2) ground-state
energies, we compare them to results from the IT-NCSM,
which yields the exact NCSM results within quantified un-
certainties from the importance truncation [26, 33]. In the
IT-NCSM calculations, we use the full 3N interaction without
NO2B approximation, and theE3max cut is naturally compat-
ible with the IT-NCSM model space truncation [13]. In Fig. 3
we show the convergence of the oxygen ground-state energies
for the NN+3N-induced and NN+3N-full Hamiltonians as a
function of Nmax, along with exponential fits which extrap-
olateNmax → ∞ [26, 33, 34]. With the exception of26O,
all isotopes converge well, and the uncertainties of the thresh-
old and model spaces truncations of the IT-NCSM results are
typically about 1 MeV. For26O, the rate of convergence is
significantly worse, which is expected due to the resonance
nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSM with full3N interactions. For
26O, the computation of the completeNmax sequence shown
in Fig. 3 requires about 200,000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3,000 CPU hours on a com-
parable system. Overall, the method scales polynomially with
O(N6) to larger basis sizesN , which makes it ideally suited
for the description of medium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and IT-
NCSM ground-state energies of the oxygen isotopes, for the
NN+3N-induced and NN+3N-full Hamiltonians withλSRG =
1.88 fm−1 to experiment. For the latter, the overall agreement
between the two very different many-body approaches and
experiment is striking: Except for slightly larger deviations
in 12O and26O, we reproduce experimental binding energies
within 2-3 MeV. This is a remarkable demonstration of the
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FIG. 4. (Color online) Oxygen ground-state energies for theNN+3N-
induced (top) and NN+3N-full (bottom) Hamiltonian withΛ3N =
400 MeV/c. MR-IM-SRG(2), CCSD, andΛ-CCSD(T) results are
obtained at optimal~Ω, using 15 major oscillator shells andE3max =
14. The IT-NCSM energies are extrapolated to infinite model space.
Experimental values are indicated by black bars [28, 29].

predictive power of current chiral NN+3N Hamiltonians, at
least for ground-state energies. For further confirmation,we
perform CC calculations with singles and doubles (CCSD),
as well as perturbative triples (Λ-CCSD(T)) [15, 22, 35, 36]
for oxygen isotopes with sub-shell closures. Using the same
Hamiltonians in NO2B approximation, the MR-IM-SRG en-
ergies are bracketed by the CC results, and similar to theΛ-
CCSD(T) values, consistent with the closed-shell results dis-
cussed in [13].

For the NN+3N-induced calculation, which should be com-
pared to calculations with the bare chiral NN interaction [6],
the reproduction of experimental trends fails, and the neutron
drip line is predicted at the wrong mass, because26O is bound
with respect to24O. This illustrates the crucial importance of
the chiral 3N interaction for a proper description of the struc-
ture of neutron-rich nuclei [32].

Let us now address the uncertainties of our results. The
MR-IM-SRG(2) energies lie 1.5–2% below the IT-NCSM re-
sults. About 1% of this deviation is caused by the NO2B
approximation. The uncertainty due to theE3max cut is less
than 1% at lowλSRG. While these uncertainties exhaust the
greater part of the 1.5–2% deviation between MR-IM-SRG(2)
and IT-NCSM, and suggest a very small uncertainty due to the
many-body truncation, we assume a more conservative many-
body truncation error of 1–1.5%, and an overall uncertainty
of our oxygen energies at the level of 3–3.5%, consistent with
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our closed-shell IM-SRG calculations [13]. Because all irre-
ducible many-body density matrices vanish in closed-shellnu-
clei, our findings indicate that the truncation of terms contain-
ing λ(n≥3) and non-linear powers ofλ(2) is negligible com-
pared to the truncation of induced three-body operators. A
more detailed analysis of the MR-IM-SRG truncation scheme
will be presented in a future publication.

Conclusions. We have generalized the IM-SRG approach
to multi-reference states, and used the resulting MR-IM-SRG
method to perform the firstab initio study of all even oxygen
isotopes with chiral NN+3N Hamiltonians, along with the IT-
NCSM and the CC method. The MR-IM-SRG results are in
excellent agreement with those from the other methods, con-
firming its reliability, and the method’s modest computational
demands make it ideally suited for the description of medium-
and heavy-mass open-shell nuclei far from shell closures.

Our calculated oxygen ground-state energies agree remark-
ably well with experimental binding energies within theoret-
ical uncertainties of 3%. This is achieved without any re-
adjustment of the interaction to experimental data beyond
4He, and therefore constitutes an impressive demonstration
of the predictive power of chiral NN+3N Hamiltonians. The
present work also highlights the importance of the 3N interac-
tion for the nuclear structure of neutron-rich nuclei, as demon-
strated by the robust reproduction of the oxygen drip line.
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