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We formulate the In-Medium Similarity Renormalization @m(IM-SRG) for open-shell nuclei using a
multi-reference formalism based on a generalized Wick rémeointroduced in quantum chemistry. The re-
sulting multi-reference IM-SRG (MR-IM-SRG) is used to parh the firstab initio study of all even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the prototthe neutron drip lines. We obtain an excellent
reproduction of experimental ground-state energies witmgjfied uncertainties, which is validated by results
from the Importance-Truncated No-Core Shell Model and tbeplzd Cluster method. The agreement between
conceptually different many-body approaches and expetirighlights the predictive power of current chi-
ral two- and three-nucleon interactions, and establisheR-IM-SRG as a promising new tool fab initio
calculations of medium-mass nuclei far from shell closures

PACS numbers: 13.75.Cs,21.30.-x,21.45.Ff,21.60.D#006 ¢

Introduction. Neutron-rich nuclei are the focus of the ex- obtain
perimental program of current and next-generation rare iso
tope facilities. Emerging phenomena such as halos or neutro Apg = AL AN AT AL AR
skins make these nuclei ideal laboratories to study nuatear 4 (/\11 /\371 — )\}n/\l2 4 )\1131) Ai?v R S ¢2)
teractions in delicately tuned scenarios, and motivateitee
of ab initio many-body calculations to provide their descrip- where: . : indicates normal-ordering, and we have introduced
tion from first principles. Such calculations make it poksib irreducible one- and two-body density matricgd and(®):
to confront modern nuclear Hamiltonians from chiral effec- | 1 12 12 113 . 1112
tive field theory (EFT) [1, 2] with a wealth of data beyond Ay = (243 [®), Agh = (P45 [®) — AoAi + A3Ai. (3)
few-body systems.

For light nuclei, theab initio No-Core Shell Model
(NCSM) [3, 4] provides the capabilities for studies of iguito
chains, but for medium-mass nuclei this approach is not-feas

ble because of its large computational effort. Many-bod§ite  orms of density matrices of lower rank and encode informa-

niques with more modest computational scaling, such as thg,n ahouts-body correlations in the reference state [14]. For
Coupled Cluster (CC) [5-7] or Self-Consistent Green's FUNC 5, ingependent-particle state, all matrices exaéptvanish.

tion methods [8, 9], can be used to probe nuclei in the vicin- proqycts of normal-ordered operators can be expanded by
ity of shell closures, but are not applicable for open-shell . ons of a generalized Wick theorem (GWT), e.g.
clei far from shell closures. For such nuclei, a self-caesit ' '

Gor'kov formalism was developed recently [10, 11], butthis : A2 .0 A3% . — . A1234 . L \L. A28 . 3. 40128 4

approach is currently limited to second-order terms in the AAZ - AIAZ o I2) L 434 . 12 434, 4

many-body perturbation expansion. A = AN+ AT) AT s s G (4)
In this Letter, we describe the extension of the In-Mediumwhere¢) = A} — 63 [16]. In addition to simple contractions

Similarity Renormalization Group (IM-SRG) framework of containing\(*) and¢(?) which also occur in the standard Wick
Refs. [12, 13] to open-shell nuclei by means of a multi-theorem, we obtain terms involving?, ..., A\(®). Each den-
reference formulation. We use the resulting MR-IM-SRG andsity matrix must have at least one index from each of the op-
two other many-body approaches, the Importance-Truncatestators in the product — other terms vanish due to the initial

No-Core Shell Model (IT-NCSM) and the CC method, to per-normal-ordering (2) [14]. In the following, we work in naalr
form the firstab initio study of all even oxygen isotopes with orbitals, i.e., the eigenbasis &f!), where

chiral NN+3N Hamiltonians.
Formalism. The main tools for the derivation of the MR- Ay =18y, & =-nidy=—(1—n1)d;, %)
IM-SRG are the generalized normal-ordering and Wick theo-

rem by Kutzelnigg and Mukherjee [14]. We write a string of 21d the e|genva_léjes ﬁre theSochupatlon m;lmh)e_irma = L
creation and annihilation operators in tensorial form, We now consider the IM-SRG operator flow equation

d
Al =al. afan ..., (1) —H(s) = [n(s), H(s)].. (6)
and expand it in terms of components that are normal-orderely integrating Eq. (6), we generate a continuous unitarysra

with respect to an arbitrary reference stade [14-16]. We  formation that decouples the ground-state of the Ham#toni

The particle rank of the irreducible density matrices is ev-
ident from the single-particle indices. Generally, uprto
body irreducible density matrices™ appear in the expan-
sion of ann-body operator, which are defined recursively in
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H(s) from excitations, and solve the many-body problemthe energy denominators, can be evaluated using the general
[12, 13]. Suppressing the flow parametefor brevity, we ized normal ordering. This yields
apply the generalized normal-orderingiioand the generator —

i i nin
7, and evaluate the commu'Fator using the GWT to obtain then% S p— 1 22 2 S -e2+..., (10)
MR-IM-SRG flow equations: nifi —nafsy +ninel'y;

dE n2 = mmgnanal; — [(12) & (34)]
= = Z("a — ) (g £ — fiml) T fl 4 n2f3 —naf3 —nafi+ G
u,l:)l +..., (11)
abed
3 (e )Acd, m  CH-mmrE e
4 abed d — (ﬁlngf%g + T_LQTL4F§3 + [1 L d 2]) . (12)
The dots in Egs. (10) and (11) indicate terms that are linear i
if21 _ Z nLfe + Z NeTPL (na — ) A2, Terms containing("=3) or nonlinear powers of(®) are
truncated.
1 _— In cases where the flow stalls due to small energy denom-
T3 Zﬁbgng (nafipnc + Nanpne) inators, we use Wegner's generatpr= [H, H°Y] as a fall-
abe back, defining the one- and two-body parts of the off-diagona
1 H H od
i 7 Z plarde nde | Z nlarbe Aae HamiltonianH°¢ as
) abede abede (de)% — T_l177/2f21 4 [1 VN 2] ,
laed yced a
-5 bzc; (msTaeNGe — miTaeAde) — I« f.1], (T°9)12 — 7 iongnaTL2 4 [(12) © (34)] . (13)
(8  This generator is free of numerical instabilities but legs e
ficient because the flow equations become stiff [12, 13]. In
d the limit of a single Slater determinant reference stateh bo
%F;j = Z (nal'4: + m2D4¢ — gL — ngTs2 ?1e2ne1r§]tors reduce to the forms used for closed-shell ninclei
—finSd — £2n5 + 2 + fina2) We obtain a reference state for each nucleus by solving
the Hartree-Fock-Bogoliubov (HFB) equations, and preject
+ - Z 121““1’ }ﬁ,ngﬁ) (1=nq —np) ing the resulting state on proton and neutron numbpgy, =
Px Pz |HFB) [18]. This choice allows us to enforce spheri-
+ Z Ny — 773b ap2b pégnig) [12]), cal symmetry in calculations for even nuclei [19], and dseat

increases the single-particle basis sizes we can treat. The
(9)  natural-orbital basis of®) is the usual canonical basis of the

HFB vacuum, allowing us to use analytic expressions for the
whereE = (®| H |®), and the one- and two-body partsidf  density matrices [20].
denoted by andl’, contain in-medium contributionsfromthe  The MR-IM-SRG method can be extended systematically
3N interaction because of the normal ordering [12, 13]. Theoy improving the truncation scheme: One would include
symbol[n < f,T] in Eq. (8) indicates an interchange of the 3, ..., A-body operators when Eq. (6) is expanded in normal-
one- and two-body parts efand H. To close the system of ordered components, as well as additional terms involwing i
flow equations (7)—(9), we truncate three-body operatd¥ [1 reducible density matrices. While the number of flow equa-
and a term containiny® in the energy flow equation (7). We tions is the same as in the single-reference case, their com-
refer to this truncation as MR-IM-SRG(2). plexity grows much more rapidly due to additional terms from

By integrating Egs. (7)—(9), we perform a non-perturbativethe generalized normal ordering [12—14].
resummation of the Many-Body Perturbation series [12, 13]. Calculation Details. Reference states for the MR-IM-
The flowing two-body vertex is RG-improved by Eq. (9), e.9., SRG calculation are obtained by solving the HFB equations in
with contributions from generalized ladder (3rd line) amdyr 15 major harmonic-oscillator (HO) shells, and projectihg t
diagrams (4th line), which in turn generate correction$y® t resulting state on good proton and neutron numbers [13, 21].
ground-state energy whéhis inserted in Eq. (7) [13]. For the 3N interaction, the sum of the HO energy quantum
As our default choice for the generator, we use the ansatmumbers of a 3N basis state is limited by + e5 + ez <

of White [13, 17]. The required matrix elements of the Hamil- Esmax = 14, as discussed in [13, 22]. Reducififymax from
tonian, such ag®| H : A13 : |®), which couple the reference 14 to 12 changes the MR-IM-SRG(2) ground-state energies
state to excitations, of®|: A%2 : H : A1 :|®), which enter for oxygen isotopes by less than 1% for the Hamiltonians used
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FIG. 1. (Color online) Convergence of the MR-IM-SRG(2) gndu A

state energies df O and?® O with respect to the single-particle basis

sizeemax, for the NN+3N-full Hamiltonian afsre = 2.0 fm . FIG. 2. (Color online) Dependence of the MR-IM-SRG(2) oxyge
ground-state energies for the NN+3N-full Hamiltonian oe ties-
olution scale and the initial cutoffizy. For eachAsn, the band is

in this work. The intrinsic NN+3N Hamiltonian is normal- OPtained by varying\sre from 2.24 (open symbols) td.88 fm—!
losed symbols). Experimental values are indicated bgkbtmars

ordered with respect to the reference state, and the retsidu%j8 29]
normal-ordered 3N interaction term is discarded, leading t~ '~
the normal-ordered two-body approximation (NO2B), which
is found to overestimate oxygen binding energies by about 1%, other continuum states. The inset in Fig. 2 illustraias t
[13, 22]. the correct drip-line systematics is independentgys in the

In this Letter, we use the same nuclear Hamiltonians as igtudied range and also robust against variations of thefcuto
our recent IM-SRG and CC studies [13, 22, 23]: The NN in- A5y, This suggests that the long-range part of the two-pion ex-
teraction is the chiral RLO interaction by Entem and Mach- change (2PE) 3N interaction, which remains unchanged as we
leidt, with cutoff Axy = 500 MeV/c [2, 24]. Our standard |ower Aay, is key to obtaining the proper isotopic trends. The
three-body Hamiltonian is a local®MO 3N interaction with  2PE contribution has significant spin-orbit and tensor term
initial cutoff Asn = 400 MeV/c. The resolution scale of and is therefore important for the evolution of the shellistr
the Hamiltonian is lowered tdsre = 1.88,...,2.24 fm™"  tyre along the isotopic chain, as also demonstrated in other
by means of an SRG evolution in three-body space [25-27ktudies, e.g. [32].
Hamiltonians which only contain SRG-induced 3N forces are | et us now discuss the effect of varying the resolution scale
referred to as NN+3N-induced, those also containing ailnit - As discussed in [13, 22], thesre-dependence of our energies
3N interaction as NN+3N-full. is the net result of omitted induced 4N interactions, Fagax

In Fig. 1, we illustrate the convergence of the MR-IM- cut, and the MR-IM-SRG(2) truncation of the many-body ex-
SRG(2) ground-state energies 80 and*¢O with respectto  pansion, while the effect of the NO2B approximation is found
the single-particle basis size. At the optinidl, the change to be independent ofsge.
in the ground-state energy is 0.1% when we increase the basisFor Azy = 350 MeV/c we do not expect significant in-
from emax = 12 to 14. This rapid convergence is representa-duced 4N interactions [27]. A3srg is reduced, we cap-
tive for all Hamiltonians used in this work. ture additional repulsive 3N strength in matrix elementshwi

Results. In Fig. 2, we show MR-IM-SRG(2) ground-state e1 + e2 + e3 < Ezmax. We also speed up the convergence
energies of the even oxygen isotopes for NN+3N-full Hamil-of the many-body expansion and reduce the error due to the
tonians with initial cutoffsAgy = 350,400 and450 MeV/c. MR-IM-SRG(2) truncation, but for the resolution scalescon
For the 3N low-energy constants, we use a fixgd= —0.2,  sidered here, this effect is already saturated. In totaffimek
andcg = 0.205,0.098, and—0.016, respectively, which are a slight artificial increase of the ground-state energiewes
fit to the *He binding energy in NCSM calculations [23, 27]. lower Asrg[13].
For the NN+3N-full Hamiltonian withAsy = 400 MeV/¢, For our standard choicésy = 400 MeV/¢, effects from
we achieve an excellent reproduction of experimental data aomitted 4N interactions, th&snax cut, and the many-body
the way to the neutron drip line &0 [29], with deviations truncation cancel, and thesge-dependence of the energies
of 1-2%. Recent experiments place #© ground-state res- in Fig. 2 is extremely weak [13]. The omission of 4N in-
onance at, < 150 keV above theé*O ground-state energy teractions becomes the dominant source of uncertainty as we
[30, 31]. We slightly overestimate this energy in our calcu-increase\sy to 450 MeV/¢, resulting in an enhancetsge
lation because the HO basis expansion of our single-particldependence of the ground-state energies of the heavier oxy-
wave functions is ill-suited to the description of resoresc gen isotopes. This is consistent with the even stronggg-
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dependence faksy = 500 MeV/c observed in Refs. [23, 26, A

27].

- F
To assess the quality of our MR-IM-SRG(2) ground-statemduced (top) and NN+3N-full (bottom) Hamiltonian withsy =

energies, we compare them to results from the IT-NCSM,;, MeV/c. MR-IM-SRG(2), CCSD, and\-CCSD(T) results are
which yields the exact NCSM results within quantified un- gptained at optimais2, using 15 major oscillator shells arhmax =
certainties from the importance truncation [26, 33]. In thei4. The IT-NCSM energies are extrapolated to infinite modetepa
IT-NCSM calculations, we use the full 3N interaction withiou Experimental values are indicated by black bars [28, 29].

NO2B approximation, and thE5max cut is naturally compat-

ible with the IT-NCSM model space truncation [13]. In Fig. 3

we show the convergence of the oxygen ground-state energipsedictive power of current chiral NN+3N Hamiltonians, at
for the NN+3N-induced and NN+3N-full Hamiltonians as a least for ground-state energies. For further confirmatiom,
function of Nmayx, along with exponential fits which extrap- perform CC calculations with singles and doubles (CCSD),
olate Nmax — oo [26, 33, 34]. With the exception 0O,  as well as perturbative triple{CCSD(T)) [15, 22, 35, 36]
all isotopes converge well, and the uncertainties of thesttw  for oxygen isotopes with sub-shell closures. Using the same
old and model spaces truncations of the IT-NCSM results arélamiltonians in NO2B approximation, the MR-IM-SRG en-
typically about 1 MeV. Forr®0, the rate of convergence is ergies are bracketed by the CC results, and similar to\the
significantly worse, which is expected due to the resonanc€CSD(T) values, consistent with the closed-shell resugs d
nature of this ground state. cussed in [13].

The neutron-rich oxygen isotopes are the heaviest nuclei For the NN+3N-induced calculation, which should be com-
studied so far in the IT-NCSM with fuBV interactions. For pared to calculations with the bare chiral NN interactioh [6
260, the computation of the complefé .« sequence shown the reproduction of experimental trends fails, and the noaut
in Fig. 3 requires about 200,000 CPU hours. In contrast, arip line is predicted at the wrong mass, becalisis bound
corresponding sequence of single-particle basis sizeken t with respect t&*O. This illustrates the crucial importance of
MR-IM-SRG requires only about 3,000 CPU hours on a com-the chiral 3N interaction for a proper description of theistr
parable system. Overall, the method scales polynomiatly wi ture of neutron-rich nuclei [32].

O(N®) to larger basis size®’, which makes it ideally suited Let us now address the uncertainties of our results. The
for the description of medium- and heavy-mass nuclei. MR-IM-SRG(2) energies lie 1.5-2% below the IT-NCSM re-

In Fig. 4, we compare the MR-IM-SRG(2) and IT- sults. About 1% of this deviation is caused by the NO2B
NCSM ground-state energies of the oxygen isotopes, for thapproximation. The uncertainty due to thgmax cut is less
NN+3N-induced and NN+3N-full Hamiltonians witksgrg = than 1% at low\sgrg. While these uncertainties exhaust the
1.88 fm~* to experiment. For the latter, the overall agreemengreater part of the 1.5-2% deviation between MR-IM-SRG(2)
between the two very different many-body approaches andnd IT-NCSM, and suggest a very small uncertainty due to the
experiment is striking: Except for slightly larger devaats = many-body truncation, we assume a more conservative many-
in 120 and?50, we reproduce experimental binding energiesbody truncation error of 1-1.5%, and an overall uncertainty
within 2-3 MeV. This is a remarkable demonstration of the of our oxygen energies at the level of 3—3.5%, consisterfit wit

IG. 4. (Color online) Oxygen ground-state energies folNha-3N-
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our closed-shell IM-SRG calculations [13]. Because a#l-irr  [7] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and

ducible many-body density matrices vanish in closed-shell T. Papenbrock, Phys. Rev. Let09, 032502 (2012).
clei, our findings indicate that the truncation of terms emt ~ [8] C. Barbieri and M. Hjorth-Jensen, Phys. Rev.7€; 064313
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