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Abstract

It is suggested that Goldstone bosons may be masquerading as fractional
cosmic neutrinos, contributing about 0.39 to what is reported as the effective
number of neutrino types in the era before recombination. The broken
symmetry associated with these Goldstone bosons is further speculated to
be the conservation of the particles of dark matter.
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The correlations of temperature fluctuations in the cosmic microwave
background depend on the effective number Neff of neutrino species present
in the era before recombination. Although observations are certainly con-
sistent with the expected value Neff = 3, there have been persistent hints
in the data that the effective number may be somewhat greater. WMAP9
together with ground-based observations (WMAP9 +eCMB)[1] gave Neff =
3.89 ± 0.67, while Planck together with the WMAP9 polarization data and
ground-based observations (Planck+WP+highL)[2] gives Neff = 3.36±0.34,
both at the 68% confidence level. Is it possible that some nearly massless
weakly interacting particle is masquerading as a fractional cosmic neutrino?

As a candidate for an imposter fractional neutrino, one naturally thinks
of Goldstone bosons, associated with the spontaneous breakdown of some
exact or nearly exact global continuous symmetry. They would of course
be massless or nearly massless, and the characteristic derivative coupling of
Goldstone bosons would make them weakly interacting at sufficiently low
temperatures.

Since Fermi statistics reduces the energy density of neutrinos relative
to massless bosons by a factor 7/8, and Neff lumps antineutrinos with neu-
trinos, a neutral Goldstone boson might look like (1/2)/(7/8) = 4/7 of a
neutrino. But for this to be true, there is an important qualification: the
Goldstone bosons must remain in thermal equilibrium with ordinary parti-
cles until after the era of muon annihilation, so that the temperature of the
Goldstone bosons matches the neutrino temperature. If Goldstone bosons
went out of equilibrium much earlier, then neutrinos but not Goldstone
bosons would have been heated by the annihilation of the various species of
particles of the Standard Model, and the contribution of Goldstone bosons
to Neff would be much less than 4/7. As we shall see, there is a plausible
intermediate possibility, that the contribution of Goldstone bosons to Neff

would be (4/7)(43/57)4/3 = 0.39. To judge when the Goldstone bosons went
out of thermal equilibrium, we need a specific theory[3].

We will consider the simplest possible broken continuous symmetry, a
U(1) symmetry associated with the conservation of some quantum number
W . All fields of the Standard Model are supposed to have W = 0. To allow
in the simplest way for the breaking of this symmetry, we introduce a single
complex scalar field χ(x), neutral under SU(3)⊗SU(2)⊗U(1), which carries
a non-vanishing value of W . With this field added to the Standard Model,
the most general renormalizable Lagrangian is

L = −1

2
∂µχ

† ∂µχ+
1

2
µ2χ†χ− 1

4
λ
(

χ†χ
)2
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−g
4

(

χ†χ
) (

ϕ†ϕ
)

+ LSM , (1)

where µ2, g , and λ are real constants; LSM is the usual Lagrangian of the
Standard Model; and ϕ = (ϕ0, ϕ−) is the Standard Model’s scalar doublet.
Experience with the linear σ-model shows that with a Lagrangian like (1),
there are several diagrams in each order of perturbation theory that must
be added up in order to give matrix elements that agree with theorems
governing soft Goldstone bosons. To avoid this, it is better to separate a
massless Goldstone boson field α(x) and a massive “radial” field r(x) by
defining

χ(x) = r(x)e2iα(x) , (2)

where r(x) and α(x) are real, with the phase of χ(x) adjusted to make
〈α(x)〉 = 0. (The 2 in the exponent is for future convenience.) The La-
grangian (1) then takes the form

L = −1

2
∂µr ∂

µr +
1

2
µ2r2 − 1

4
λr4

−2r2∂µα∂
µα− g

4
r2
(

ϕ†ϕ
)

+ LSM . (3)

The SU(2)⊗U(1) symmetry of the Standard Model is of course broken
by a non-vanishing vacuum expectation value of the field ϕ0, with a real
zeroth-order value 〈ϕ〉 ≃ 247 GeV. The U(1) symmetry of W conservation
is also broken if (µ2−g〈ϕ〉2)/λ is positive, in which case r gets a real vacuum
expectation value, given in zeroth order by

〈r〉 =
√

m2
r/2λ , m2

r ≡ µ2 − g〈ϕ〉2/2 . (4)

In this formalism, the interaction of Goldstone bosons with the particles
of the Standard Model arises entirely from a mixing of the radial boson with
the Higgs boson. There is a term −g〈ϕ〉〈r〉ϕ′r′ in the Lagrangian (3), where
r′ ≡ r − 〈r〉 and ϕ′ ≡ Reϕ0 − 〈ϕ〉 , so that the fields describing neutral
spinless particles of definite non-zero mass are not precisely ϕ′ and r′, but
instead cos θ ϕ′+sin θ r′ and − sin θ ϕ′+cos θ r′, with the mixing angle given
by

tan 2θ =
g〈ϕ〉〈r〉
m2
ϕ −m2

r

. (5)

Since only one Higgs boson has been discovered at CERN[4], with what ap-
pear to be the production rate and decay properties expected in the Stan-
dard Model, this mixing must be weak. We will make the assumption that
| tan 2θ| ≪ 1, and return soon to the question whether this is plausible.
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This ϕ−r mixing allows the Higgs boson to decay into a pair of Goldstone
bosons. The fourth term in (3) contains an interaction (1/2〈r〉)r′∂µα′∂µα′,
where α′ ≡ 2〈r〉α is the canonically normalized Goldstone boson field. To-
gether with one vertex of the mixing term −g〈ϕ〉〈r〉ϕ′r′, this gives a partial
width

Γϕ→2α =
g2〈ϕ〉2m3

ϕ

16π(m2
ϕ −m2

r)
2

(6)

Taking 〈ϕ〉 = 247 GeV, mϕ = 125 GeV, and assuming mϕ ≫ mr, this
partial width is 9.7 g2 GeV. The Goldstone bosons interact very weakly
with particles of the Standard Model, so these decays would be unobserved.
But under the assumption that the production and decays of the Higgs
boson are correctly described by the Standard Model aside perhaps from
decay into some new unobserved particles, the branching ratio for decay
into new unobserved particles is known to be less than about 19% [5], so
with a Higgs width of about 4 MeV, the partial width (6) must be less than
0.8 MeV, and therefore |g| < 0.009. With g this small, and again assuming
that mϕ ≫ mr, the mixing parameter (5) is indeed much less than one,
provided that 〈r〉 is much less than 7 TeV, which seems not implausible.

Now, back to the problem of when the Goldstone bosons cease being in
thermal equilibrium with the particles of the Standard Model. The joint ac-
tion of the previously discussed terms−(1/2〈r〉)r′∂µα′∂µα′ and−g〈ϕ〉〈r〉ϕ′r′

in the Lagrangian (3) produces an effective interaction between low-energy
Goldstone bosons and any fermion F of the Standard Model:

− gmF

2m2
rm

2
ϕ

∂µα
′ ∂µα′ FF . (7)

At a temperature T , the derivatives in Eq. (7) yield factors of order kT ,
and the number density of any particle with mass of order kT or less is of
order (kT )3, so the rate of collisions of Goldstone bosons with any species
of fermion F with mass mF at or below kT is of order g2m2

F (kT )
7/m4

rm
4
ϕ.

The expansion rate of the universe is of order (kT )2/mPL where mPL is the
Planck mass, so the ratio of these two rates is

collision

expansion
≈ g2m2

F (kT )
5mPL

m4
rm

4
ϕ

. (8)

This is a crude estimate, but the ratio decreases so rapidly with temperature
that it gives a fair idea of when the Goldstone bosons go out of equilibrium.
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As mentioned earlier, if Goldstone bosons go out of equilibrium before
kT falls below the mass of most of the particles of the Standard Model,
then the neutrinos (which are in thermal equilibrium at these temperatures)
will be heated by the annihilation of Standard Model particles while the
Goldstone bosons will not, and the contribution of Goldstone bosons to
Neff will be much less than 4/7. But suppose that Goldstone bosons go
out of equilibrium while kT is still above the mass of muons and electrons
but below the mass of all other particles of the Standard Model, a time
when neutrinos are still in thermal equilibrium. The cosmic entropy density
just before the annihilation of muons, taking account of photons, muons,
electrons, and three species of neutrinos, is

s =
4aBT

3

3

(

1 +
7

4
+

7

4
+

21

8

)

,

while after muon annihilation it is

s =
4aBT

3

3

(

1 +
7

4
+

21

8

)

,

where aB is the radiation energy constant. The constancy of the entropy
per co-moving volume s a3 tells us that for particles like neutrinos that are
in thermal equilibrium, Ta must increase by a factor (57/43)1/3 , while for
free Goldstone bosons Ta is constant, so that Goldstone bosons make a
contribution to the measured Neff equal to (4/7)(43/57)4/3 = 0.39, which at
least for the present seems in good agreement with observation. For this to
be the case, the ratio (8) must equal unity when mF = mµ and kT ≈ mµ,
so that

g2m7
µmPL

m4
rm

4
ϕ

≈ 1 . (9)

For instance, with g = 0.005 and mϕ = 125 GeV, this tells us that mr ≈ 500
MeV. (In order for the Goldstone bosons to go out of equilibrium when the
only massive Standard Model particles left are electrons and positrons, in
which case they make a contribution to Neff equal to 4/7, the value of mr

would have to be less than given by Eq. (9) by a factor between (me/mµ)
1/2

and (me/mµ)
7/4.)

Another consequence of the term −(1/2〈r〉)r′∂µα′∂µα′ in the Lagrangian
is that the massive r bosons decay rapidly into Goldstone boson pairs. Even
for 〈r〉 as large as 7 TeV, and takingmr = 500 MeV, the radial boson lifetime
would be at most of order 10−16 seconds, so they would be long gone at any
era with which we are concerned here.
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We can further speculate about the physical significance of the assumed
broken U(1) symmetry. There is no room for a new broken global symmetry
in the Standard Model, so it natural to think of a symmetry associated with
particles not described by the Standard Model, but known to be abundant
in the universe — that is, with dark matter. We will now assume that
the conserved quantum number W associated with the global U(1) symme-
try introduced above is WIMP number, the number of weakly interacting
massive particles minus the number of their antiparticles. We introduce a
single complex Dirac WIMP field ψ(x), carrying WIMP quantum number
W = +1, and give the scalar field χ(x) WIMP quantum numberW = +2, so
that its expectation value leaves an unbroken reflection symmetry ψ → −ψ.
All the fields of the Standard Model are again assumed to have W = 0.
The most general renormalizable term involving the WIMP field that can
be added to the Lagrangian (1) is

Lψ = −ψ̄γµ∂µψ −mψψ̄ψ − f

2
ψcψ χ† − f∗

2
ψψc χ , (10)

where ψc is the charge-conjugate field∗∗; mψ and f are constants; and by a
choice of phase of ψ we can make f as well as mψ real. If together with the
definition (2), we define a field ψ′(x) by

ψ(x) = ψ′(x)eiα(x) , (11)

the WIMP Lagrangian (10) then becomes

Lψ = −ψ′γµ∂µψ
′ −mψψ′ψ′ − iψ′γµψ′ ∂µα

−f
2
ψ′cψ′ r − f

2
ψ′ψ′c r . (12)

Because r has a non-zero vacuum expectation value 〈r〉, the WIMP fields
with definite mass are a pair of self-charge-conjugate fields

ψ±(x) =
1√
2

(

ψ′(x)± ψ′c(x)
)

, (13)

with masses
m± = mψ ± 〈r〉f . (14)

∗∗That is, ψc is the complex conjugate of ψ, multiplied by a matrix C
−1β (in the notation

of ref. 6) that gives ψc the same Lorentz transformation properties as ψ.
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The part of the Lagrangian that involves the WIMP fields can then be put
in the form

Lψ = −1

2

∑

±

[

ψ±γ
µ∂µψ± +m±ψ±ψ±

]

− i

2

[

ψ+γ
µψ− + ψ−γ

µψ+

]

∂µα

−f
2
r′
[

ψ+ψ+ + ψ−ψ−

]

, (15)

where again, r′ ≡ r − 〈r〉.
We see that instead of one Dirac WIMP, there are two Majorana WIMPs

of different mass. But the heavier WIMP will decay into the lighter one
by emitting a Goldstone boson, while the lighter one is kept stable by an
unbroken reflection symmetry, so in this theory we can expect that the
present universe will contain only one kind of Majorana WIMP, the lighter
one w, with mass mw equal to the smaller of m±.

The r−ϕ mixing allows the Higgs boson to decay into pairs of the lighter
WIMPs, if they are lighter than mϕ/2. In this case, the partial width for
this decay is

Γϕ→2w =
1

32π

(

fg〈r〉〈ϕ〉
m2
ϕ −m2

r

)2
√

m2
ϕ − 4m2

w (16)

As we have seen, observations require this to be less than about 0.8 MeV.
Taking mr and 2mw much less than mϕ, this condition tells us that the
WIMP mass splitting ∆m ≡ |m+ − m−| = 2|〈r〉f | satisfies |g|∆m < 3.2
GeV, a constraint that will be useful in what follows.

The surviving WIMPs can annihilate in pairs through their interaction
with Goldstone bosons and with the field r′, which mediates interactions
both with Goldstone and radial bosons and with the particles of the Stan-
dard Model. It is well known that in order for annihilation of WIMPs to give
a dark matter density like that observed, it is necessary for the annihilation
cross-section to satisfy[7]

mw

(

2π
∑〈σv〉

G2
wkm

2
w

)0.51

≃ 3.7GeV × (2ΩDh
2)−0.54 ≃ 9 GeV , (17)

where ΩDh
2 ≃ 0.105 is the usual dark matter density parameter; the sum

is taken over all annihilation channels; and Gwk ≃ 10−5 GeV−2 is the weak
coupling constant. In what follows we will simplify our estimates by replac-
ing the exponent 0.51 with 1/2.

One possibility is annihilation into a quark q and its antiparticle. The
combination of the interactions fψ±ψ±r

′, the mixing term −g〈ϕ〉〈r〉ϕ′r′
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and the Standard Model interaction (mq/〈ϕ〉)qqϕ′ gives an effective cross
section for annihilation of cold WIMP pairs into a relativistic quark q and
its antiquark:

∑

〈σv〉 = 3

2π

(

gmqmw∆m

2(4m2
w −m2

r)(4m
2
w −m2

ϕ)

)2

, (18)

in which we have used Eq. (14) to express |〈r〉f | as ∆m/2.
For heavy WIMPs, with mw much larger than the mass mt of the top

quark, the quark produced in WIMP annihilation would be the top quark, in
which case Eq. (17) (with 2mw much larger than mr and mϕ) requires that
∆m/mw = 32m2

wGwk/
√
3|g|mt × 9GeV ≫ 32, requiring |mψ| and |〈r〉f | to

differ by much less than 6%.
The fine tuning problem is worse for mt > mw ≫ mϕ/2. In this case

the quark produced in WIMP annihilation would be the bottom quark, and
Eq. (17) requires that ∆m/mw = 32m2

wGwk/
√
3|g|mb×9GeV ≫ 160, which

would require |mψ| and |〈r〉f | to differ by much less than 1%.
The case mϕ ≫ 2mw ≫ mr is even less promising. In this case, Eq. (17)

gives mw ≃
√
3mq |g|∆m/8m2

ϕGwk(9 GeV) . With the previously derived
upper bound |g|∆m < 3.2 GeV, this requires that mw < 0.49mq , which is
clearly impossible if cold w pairs are to annihilate into q + q.

It appears that if ∆m and mw are of comparable magnitude, then the
annihilation of these WIMPs into quarks may not be sufficiently fast to
bring the dark matter density down to the observed value. Inclusion of
annihilation into leptons helps this problem, but apparently not enough.
Annihilation into gauge bosons may be more significant, as appears in a
different theory[8]. Of course, we could make the annihilation cross-section
as large as we like by taking 2mw sufficiently close to mϕ (or mr). The
dominant annihilation could be into pairs of Goldstone bosons (and perhaps
radial bosons). The cross-section here is of order f4/m2

w, so condition (17)
would require that mw ≈ 104 f2 GeV.

Unfortunately there are too many free parameters here to allow a definite
conclusion whether the density of WIMPs in this theory does or does not
match the observed density of dark matter.

I am grateful for a helpful correspondence with Eiichiro Komatsu, for
a valuable suggestion by Jacques Distler, for information provided by Can
Kilic and Matthew McCullough, and for a helpful comment by James Cline.

8



This material is based upon work supported by the National Science Founda-
tion under Grant Number PHY-0969020 and with support from The Robert
A. Welch Foundation, Grant No. F-0014.

———-

1. G. Hinshaw et al. [WMAP collaboration], arXiv: 1212.5226; S. Das et
al. [ACT collaboration], Astrophys. J. 729, 62 (2011); R. Keisler et

al. [SPT collaboration], Astrophys. J. 743, 28 (2011).

2. P. A. R. Ade et al. [Planck collaboration], arXiv:1303.5076; S. Das
et al. [ACT collaboration], arXiv:1301.1037; C. L. Reichardt et al.

[SPT collaboration], Astrophys. J. 755, 70 (2012). After the preprint
of this paper was circulated, I learned of a different analysis including
the Planck data, which gives Neff = 3.71±0.40, also at 68% confidence
level; see N. Said, E. Di Valentino, and M. Gerbino, arXiv:1304.6217.

3. The possibility, that Goldstone bosons that (unlike those of the present
work) are axion-like contribute to Neff , was mentioned along with
other possible contributions by K. Nakayama, F. Takahashi, and T.
T. Yanagida, Phys. Lett. B 697, 275 (2011), without addressing the
question of thermal equilibrium between these Goldstone bosons and
Standard Model particles. Axion-like Goldstone bosons were also con-
sidered by M. Lindner, D. Schmidt, and T. Schwetz, Phys. Lett. B
705, 324 (2011), but these bosons go out of equilibrium so early that
they make a negligible contribution to Neff .

4. A. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012);
S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30
(2012).

5. P. P. Giardano, K. Kannike, I. Masina, M. Raidal, and A. Strumlo,
arXiv:1302.3570.

6. S. Weinberg, The Quantum Theory of Fields - Volume I (Cambridge
University Press, Cambridge, UK, 1995), Sec. 5.4.

7. B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977); D.
D. Dicus, E. W. Kolb, and V. L. Teplitz, Phys. Rev. Lett. 39, 168
(1977); E. W. Kolb and K. A. Olive, Phys. Rev. D 33, 1202 (1986).

9



Eq. (17) is adapted from Eq. (3.4.14) of S. Weinberg, Cosmology (Ox-
ford University Press, Oxford, 2008). An additional factor 2 has been
inserted in front of ΩDh

2, because in this theory the present dark
matter density consists of a single Majorana WIMP species, rather
than distinct particles and antiparticles as assumed in the derivation
of Eq. (3.4.14).

8. J. M. Cline and K. Kainulainen, arXiv:1210.4196.

10


