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We consider a galileon field coupled to gravity. The standard no-hair theorems do not apply,
because of the galileon’s peculiar derivative interactions. We prove that, nonetheless, static spheri-
cally symmetric black holes cannot sustain non-trivial galileon profiles. Our theorem holds for trivial
boundary conditions and for cosmological ones, and regardless of whether there are non-minimal
couplings between the galileon and gravity of the covariant galileon type.

Black holes famously have no hair [1, 2]—except when
they do [3]. No-hair theorems involve assumptions that
can be violated. For instance, for scalar hair, Beken-
stein’s version [2] assumes that the action depends on
the derivatives of the scalar (π) only through the com-
bination (∂π)2. Several recent proposals for modifying
gravity on long distance scales involve introducing scalar
derivative interactions of the galileon type [4], which are
not covered by existing no-hair theorems. The galileon
can even violate the null energy condition, in a ghost-free
manner [5]. In view of the observational and theoretical
significance of the galileon—observational as an expla-
nation for cosmic acceleration, theoretical as a generic
ingredient of massive gravity [6, 7]—it is useful to in-
vestigate whether the no-hair theorem can be extended
to the galileon. We will demonstrate that indeed black
holes carry no galileon charge, at least for spherically
symmetric ones. That this is true suggests an interest-
ing experimental test of the galileon, namely that central
massive black holes in galaxies are expected to be offset
from the stars, which is presented in a separate paper
[8]. A discussion of no-hair theorem for the galileon can
also be found in an independent paper by Babichev and
Zahariade [9]. See also [10] for related discussions.

Our proof is logically very simple, and uses little infor-
mation about the theory. The main ingredients it relies
on are the shift-symmetry of the galileon action, the sym-
metries of the solution, and the regularity of diff-invariant
quantities at the horizon. It makes no use of Einstein’s
equations. We assume that we have a spherically sym-
metric, static black-hole, in the presence of a spherically
symmetric, static scalar field π(r). We find it convenient
to choose the radial coordinate r such that gtt = −1/grr,
in which case the angular part of the metric has to be
left generic:

ds2 = −f(r)dt2 +
1

f(r)
dr2 + ρ2(r)dΩ2 . (1)

Here f and ρ are generic functions. For the Schwarzschild
solution one has f = 1 − 1

r
, ρ = r. For simplicity, we

∗Electronic address: lhui@astro.columbia.edu
†Electronic address: a.nicolis@columbia.edu

choose units in which the black-hole horizon sits at r = 1.
We will not assume the Schwarzschild metric, but rather
use the more general form eq. (1). Our proof can be
schematically divided into four steps:

1. The galileon eom is a current conservation equation.
The galileon equation of motion in the absence of sources
can be written as the (covariant) conservation of a cur-
rent:

∇µJ
µ = 0 . (2)

This follows directly from the shift invariance

π → π + c , (3)

which is exact for the galileon coupled to gravity, even in
the presence of covariant galileon-type non-minimal cou-
plings [11]. The Noether current associated with such
a symmetry involves first and second (covariant) deriva-
tives of π—as well as curvature tensors in the covariant
galileon case. In flat space such a current takes the form
[4, 12]

Jµ = Gµν(∂∂π) ∂νπ , (4)

where G is a tensor polynomial.
On the other hand, for generic spacetimes, galilean

shifts of the form

π → π + bµx
µ (5)

are not a symmetry of the action, nor do they admit
an obvious generalization 1. As a consequence, their
Noether currents [15] are not conserved on non-trivial
gravitational backgrounds. Our proof does not use them,
and can thus be applied to generic shift-invariant scalar
theories.

2. Jr vanishes at the horizon. First, notice that in the
coordinates that we are using, Jr is the only non-zero
component of Jµ. This follows from the symmetries of
the solution, for the metric as well as for the scalar. By

1 See [13, 14] for non-trivial generalizations to maximally symmet-
ric spacetimes.
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rotational invariance, there cannot be any angular com-
ponents of Jµ. This is obvious, but here is a proof for
the more fastidious among our readers. The current is a
covariant quantity built out of the scalar and the metric,
their derivatives, etc. The Killing vectors ξµ that gen-
erate rotations, define symmetries for the metric and for
the scalar:

Lξ gµν = 0 , Lξ π = 0 , (6)

where Lξ denotes the Lie-derivative along ξ. Any tensor
constructed solely from these fields and their derivatives
shares the same symmetries. In particular,

LξJ
µ = 0 . (7)

However, we know that any regular two-vector field de-
fined on a two-sphere must vanish at some point. Com-
bining this with the spherical symmetry of Jµ, eq. (7),
we see that the angular components of Jµ have to vanish
everywhere.
The vanishing of J t is slightly trickier to ascertain.

From invariance under time-translations, following the
same logic as above we just get that J t is constant
in time, ∂tJ

t = 0. However, a non-zero J t picks
out a time direction—it can be future-directed or past-
directed. There is nothing in the solution for the met-
ric and for π picking a time-direction—they only depend
on r. And J t has to flip under time-reversal, because
the galileon action does not contain an (odd number of)
epsilon tensor(s): it only contains the scalar, the met-
ric, and their derivatives, and it is invariant under time-
reversal provided the scalar and the metric are even un-
der it. We thus see that time-reversal invariance forces
J t = 0.
We are thus left with Jr only. It is immediate to see

that this has to vanish at the horizon. As usual, the
horizon r = 1 corresponds to a zero of f(r). This is
because, by definition, the horizon corresponds to a locus
where the time-translational Killing vector,

ξµ = (1, 0, 0, 0) , (8)

becomes null: gµν ξ
µξν = 0. Then, assuming that the

horizon be a regular locus—a locus where all scalar quan-
tities, physical and geometrical ones, are regular—we see
that for JµJµ = (Jr)2/f to be regular there, Jr has to
vanish.

3. Jr vanishes everywhere. We now use the current con-
servation equation (2) to bootstrap our way out of the
near-horizon region, and show that, in fact, Jµ has to
vanish everywhere. Covariant current conservation can
always be rewritten as

1√−g
∂µ

(√
−gJµ

)

= 0 . (9)

In our case we have further simplifications. The only
non-vanishing component of Jµ is Jr, and it depends

on r only. Moreover, in our coordinates
√−g is simply

ρ2(r) sin2 θ. Thus we have ρ−2∂r(ρ
2Jr) = 0 which im-

plies

ρ2Jr = const . (10)

Notice that ρ2 is expected to finite (neither infinite nor
zero), even at the horizon, since it measures the area
of constant-r spheres. We have shown previously that
Jr vanishes at the horizon, and so the constant on the
r.h.s. is in fact zero. We therefore arrive at the conclusion

Jr = 0 at all r . (11)

4. π vanishes everywhere. The final step in our proof
involves integrating eq. (11), to find π(r). Of course one
possible solution is π(r) = 0. We want to prove that this
is in fact the only possible solution. More precisely: it is
the only solution that decays at infinity 2. To see this,
note that for a spherically symmetric, static configura-
tion, the current takes the form

Jr = f · π′ · F (π′; g, g′, g′′) , (12)

where f = grr as in eq. (1), π′ ≡ dπ/dr, and F is a poly-
nomial of π′, whose coefficients depend on the metric and
its derivatives (to be justified below). The crucial prop-
erty of F we will use is that it asymptotes to a nonzero
constant (which does not depend on the metric) when
π′ goes to zero. This condition is obeyed by any non-
degenerate galileon theory featuring a kinetic energy for
π. The reason is simply that in the weak π limit, the
action is well approximated by its quadratic terms and
the shift-current reduces simply to Jµ ≃ ∂µπ, up to an
overall constant which defines π’s normalization.
Now, by assumption π′ vanishes at infinity. Let us

imagine dialing the radius to progressively smaller val-
ues, starting from infinity. Imagine further that at some
radius, π′ starts deviating a little bit from zero. In that
case, by continuity, F will still be different from zero.
Since f does not vanish either (for r > 1), we therefore
reach the conclusion Jr 6= 0 (eq. 12), contradicting eq.
(11). The resolution is that π′ in fact cannot deviate
from zero, thus π′ = 0 at all radii, from which we con-
clude π = const, or equivalently π = 0, completing our
proof.
To round out our discussion, let us go back and justify

the functional dependence of F . The expression for the
current can be derived straightforwardly from the action
via Noether’s theorem. For instance, Jr has been com-
puted explicitly for the galileon in flat space [4], where it
takes the above form with f = 1 and

F = F (π′/r) (flat space). (13)

2 Alternatively, one can say that we are interested in a solution
with vanishing first derivative at infinity, for π = constant and
π = 0 are equivalent solutions, related by the shift symmetry.
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However the generic schematic form (12) can be inferred
immediately by generalizing to general metric an argu-
ment given in [4] for the flat-space case: For static, spher-
ically symmetric configurations, the galileon equation of
motion takes the form of the current conservation equa-
tion (9); Being a two-derivative eom, this cannot involve
derivatives of π higher than π′′; This then implies that Jr

cannot involve derivatives of π higher than π′; Moreover,
Jr cannot involve π directly without derivatives, because
each π in the action is acted upon by at least one deriva-
tive. An analogous argument holds for the dependence
of F on the metric, and guarantees that F depends at
most on its first r-derivatives for the covariant galileon
case [11], and at most on its second r-derivatives for the
minimally coupled one [4]. We do not make use of this
last fact—this is one of the reasons why the covariant
galileon and the minimal galileon cases can be treated on
equal footing in our proof.

Cosmological boundary conditions. For completeness, it
is worth emphasizing that there can be in general non-
linear solutions in which it is the F factor that vanishes
exactly, but these solutions will not decay at infinity—as
our proof shows. Indeed, consider for the moment the
flat-space case, where F takes the form (13). In order to
make π′/r constant and equal to a zero of F , these non-
linear solutions have to behave as π ∼ r2 at large r, and
correspond to non-trivial cosmological boundary condi-
tions at infinity, rather than to scalar profiles “sourced”
by the black-hole [4, 16]. Adding to this r2 background
field a “tail” that decays at infinity and that is somehow
sourced by the black hole is not allowed, because that
would violate the vanishing of the current. To see this,
expand the full π field as

π(r) = 1

2
H2

π r
2 + δπ(r) , (14)

whereH2
π is a zero of F—Hπ of order of the present Hub-

ble scale H0, or smaller (due to the presence of matter
for instance) [4]—and δπ(r) is the decaying perturbation
sourced by the black hole. At large r, we can expand
eq. (11) in powers of δπ(r). The leading contribution
comes from the first non-vanishing derivative of F , and
yields simply

δπ′(r) = 0 , (15)

at large but finite r, and therefore at any r.
This flat-space analysis is simplistic though, for it ne-

glects two sources of background curvature: the presence
of the black-hole, and the stress-energy tensor associated
with π’s non-trivial profile. In fact, even neglecting the
latter, the former will certainly affect π’s solution close
to the black hole—the simple r2 profile will be distorted,
if for no other reason than that the r coordinate has no
invariant meaning close to the black hole. Whether there
is scalar hair now becomes a bit subtle. In certain cases
[8, 17], we are just interested in whether the black hole ex-
periences a π force, i.e. whether it falls in the presence of

some long wavelength external π fluctuation. The ques-
tion is thus whether far away from the black hole, there
is a 1/r tail to the π profile on top of the r2 cosmological
background 3.
Consider for simplicity the limiting case of a black

hole whose gravitational radius rS = 2GM is much
much smaller than the curvature radius associated with
the non-trivial (cosmological) boundary conditions—the
Hubble radius H−1

0
. We focus on intermediate distances

rS ≪ r ≪ H−1

0
, (16)

where the metric can be well approximated by flat plus
small corrections, the leading ones being a Newtonian
1/r tail and an FRW-like quadratic potential [4],

gµν(r) = ηµν + hµν , hµν = O
(

rS
r
, H2

0r
2
)

. (17)

To focus on the fields generated by the black hole, we can
go to distances such that the latter is negligible:

H2

0r
2 ≪ rS

r
. (18)

This is of course the relevant limit for observations on
astrophysical black holes in our universe. We can now
expand the equation F = 0 to first order in δπ and hµν .
We get, schematically,

∂F

∂π′
δπ′ +

∂F

∂g
h+

∂F

∂g′
h′ +

∂F

∂g′′
h′′ ≃ 0 (19)

where the derivatives of F are evaluated at the flat-space
solution gµν = ηµν , π0(r) =

1

2
H2

πr
2.

In this expansion, however, we can treat H2
0 and H2

π .
H2

0 as negligible in first approximation, because of (18).
This is crucial, because of the way a curved metric and
its derivatives enter F : they always accompany at least
one π′, either to contract or raise the associated indices,
or via covariant derivatives of π. On the unperturbed
solution, π′ is proportional to H2

π, i.e., suppressed in our
limit. As a result we have

∂F

∂g
,
∂F

∂g′
,
∂F

∂g′′
∝ H2

π

∂F

∂π′
(20)

where the proportionality factors involve powers of r, but
no extra powers of H2

π or H2
0 . Plugging these estimates

into our linearized equation above, and reinstating the
appropriate powers of r via dimensional analysis, we get

δπ(r) ∼ rS
r

·H2

πr
2 , (21)

which is much smaller than the naively expected ‘hair’
(δπ ∼ rS/r), does not scale as 1/r, and is in fact much

3 For the relation between the field sourced by an object, and the
response of the object to an external field of the same kind, see
e.g. ref. [17].
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smaller than the fields associated with the cosmological
background, h ∼ H2

0r
2, whose ‘tidal’ effects on orbits

about a black hole are utterly negligible (for r obeying
eq. (18)). Note that there is in principle an ambiguity
to the definition of a 1/r tail, due to coordinate freedom.
Using the conventional definition of r such that the met-
ric decays like 1/r away from the black hole, and goes like
r2 approaching the Hubble scale, we have shown that no
such 1/r tail exists. Allowing for redefinitions of r that do
not affect these asymptotic regimes in the metric cannot
alter this conclusion.
To see all of the above happen in a concrete example,

consider for simplicity the cubic galileon Lagrangian [4]

L = c2
[

− 1

2
(∂π)2 + 1

2H2
π

(∂π)2�π
]

, (22)

which in the absence of gravity admits the background
solution π0(r) =

1

2
H2

πr
2. The associated shift current is

Jµ =
∂L

∂(∇µπ)
−∇ν

∂L
∂(∇ν∇µπ)

(23)

= c2
[

−∇µπ + 1

H2
π

(

∇µπ�π −∇ν∇µπ∇νπ
)]

. (24)

Dropping the overall c2 factor, and going to spherical
coordinates with the metric (1), we get

Jr = f · π′ ·
[

− 1 + 1

2H2
π

π′ ·
(

f ′ + 2fρ′/ρ
)]

. (25)

According to the decomposition (12), the terms inside the
bracket make up our F . As predicted, the metric coeffi-
cients (f , ρ) and their derivatives enter only multiplying
π′. For a nearly flat metric in spherical coordinates, we
have f = 1 +O(h), ρ = r · (1 +O(h)), so that

F = −1 + 1

H2
π

π′

r

(

1 +O(h)
)

, (26)

where we used that h′ ∼ h/r, which is appropriate for
the distances we are interested in, for which h ∼ rS/r.

Setting F = 0 we finally get

π = 1

2
H2

πr
2 +O(H2

πr
2 · h(r)) , (27)

as predicted.

Concluding remarks. We have shown that static, spher-
ically symmetric black-hole solutions for the gravity-
galileon coupled system cannot sustain non-trivial
galileon profiles. Our proof does not make use of Ein-
stein’s equations—it only uses the shift-symmetry of the
galileon action, and the regularity of diff-invariant quan-
tities at the horizon. In would be interesting to extend
our analysis to stationary rotating black holes.
For vanishing boundary conditions for the galileon field

at infinity, our theorem needs no qualifications. For
non-trivial (cosmological) boundary conditions, the ques-
tion of scalar hair is more subtle. We have shown that
for black holes that are much smaller than the asymp-
totic curvature radius, the π profile contains no large-
distance tail of order of the black-hole’s gravitational field
h ∼ rS/r. The biggest the scalar hair can be is suppressed
by an extra (Hπr)

2 factor, which makes it completely
unobservable, being much smaller than the already un-
observable fields associated with the cosmological back-
ground. It is worth noting that known black hole solu-
tions in massive gravity are consistent with our results:
they either have no galileon hair or suffer from singular-
ities at the horizon (see [18] and references therein).
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