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We present an efficient and general method to compute vortex-pinning interactions – which arise in
neutron stars, superconductors, and trapped cold atoms – at arbitrary separations, using real-time
dynamics. This method overcomes uncertainties (associated with matter redistribution by the
vortex position and the related choice of ensemble) that plague the typical approach of comparing
energy differences between stationary pinned and unpinned configurations: uncertainties that prevent
agreement in the literature on the sign and magnitude of the vortex-nucleus interaction in the crust
of neutron stars. We demonstrate and validate the method with Gross-Pitaevskii–like equations
for the unitary Fermi gas, and demonstrate how the technique of adiabatic state preparation with
time-dependent simulation can be used to calculate vortex-pinning interactions in fermionic systems
such as the vortex-nucleus interaction in the crust of neutron stars.

PACS numbers: 97.60.Jd 26.60.-c 26.60.Gj 21.60.-n

Vortex-pinning interactions play an important role in the
dynamics of various condensed superfluid systems such
as superconductors [1], trapped cold-atom gases [2], and
possibly neutron stars [3], where the angular momentum
carried by vortices can have an observable impact. Pulsar
glitches, for example – sudden increases in the rotation
frequencies of neutron stars – are theorized [4] to arise
from a sudden macroscopic unpinning of vortices: In equi-
librium, the superfluid and non-superfluid components of
a pulsar rotate at the same angular frequency. The pulsar
loses angular momentum through magnetic radiation, and
the crust slows down gradually, reducing the pulsation
rate. To maintain equilibrium, the superfluid must also
release angular momentum by diluting the vortex concen-
tration, but the presence of pinning sites (nuclei, lattices
sites, defects, etc.) may arrest the vortex motion; stress
would build until a large number of vortices rapidly unpin,
dilute, and transfer their angular momentum to the crust,
rapidly increasing in the pulsation rate – the glitch.
Despite almost 40 years, the feasibility of this mecha-

nism is still poorly understood. The conventional picture
has the angular momentum stored by the neutron super-
fluid in the crust, with pinning provided by nuclei held
in a lattice by the electrostatic (Coulomb) interaction.
(Dilute neutron matter is well approximated [5] by the
same unitary Fermi gas (UFG) produced in cold-atom
experiments [6].) Pinning may also occur on flux tubes [7],
or due to vortex tangles [8]. Recent results suggest that
the crustal neutrons may not support enough angular mo-
mentum to explain observed pulsar glitches [9], in which
case the interaction between neutron superfluid vortices
and proton flux tubes in the outer core [10] or quark
matter phases in the core may play a role [11]. In either
case, a reliable technique for calculating vortex-pinning
interactions is key. Here we present a dynamical method
for determining the sign and strength of vortex-pinning

forces in superfluids, and demonstrate that this method
can be directly applied to unambiguously calculate the
vortex-nucleus interaction using time-dependent density
functional theory (TDDFT) for nuclear matter.

Due to the importance of pinning on glitch phenomenol-
ogy, several attempts have been made to calculate the pin-
ning force in nuclear matter from underlying microscopic
models. The earliest calculations used the condensation
energy to estimate the pining force [4, 12]. In [13] the
Ginzburg-Landau (GL) framework was used to give a
detailed picture of the pinning/unpinning process: their
calculation includes an estimate of the energy as a func-
tion of displacement allowing for an estimate of the pin-
ning force. The next advance was the use of a local
density approximation [14] with Wigner-Seitz cells and
Gogny [15] and Argonne [16] interactions, which gives
similar density-dependant pattern of pinning/unpinning
as [13], but smaller by almost an order of magnitude.

Unlike vortices in weakly coupled BCS superfluids, vor-
tices in dilute neutron matter (and the UFG) displace a
substantial amount of matter from their core [17]. There-
fore, comparing “energies” of stationary configurations
with a nucleus on the core of a vortex and a nucleus away
from the vortex is confounded by a choice of ensemble:
should one fix the number of neutrons or the chemical
potential in a finite simulation volume?
Computing stationary configurations is also computa-

tionally expensive – especially given the high degree of
precision required to render meaningful energy differences
– and simulations to date have required a high degree
of symmetry. For example, recent self-consistent cal-
culations [18–20] using Hartree-Fock-Bogoliubov (HFB)
functionals extract the pinning energy of a vortex on a
single nucleus using a cylindrical geometry. In particular,
the conclusion of [19] that the pinning force is repulsive
(glitches would thereby require interstitial pinning) was
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FIG. 1. (Colour online) Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive
(left panel)/attractive (right panel) pinning potential Vpin(r) = ±3.5MeV/[1 + exp(r/fm− 7.5)] moving on a straight line from
left to right at a constant subsonic velocity v ≈ 0.1cs. The trajectory of the vortex is shown by the (black) curve and the
relative separation vector between the pinning site and the vortex core is shown as thin (white) lines for select times connecting
the corresponding dots on the trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the
right/left. Once the potential overlaps with the vortex, the vortex rapidly moves down/up – (almost) perpendicular to the
force. In the frame shown on the left, the pinning site is just to the left of the centre (x ≈ −2.5 fm) and the vortex is moving
(almost) perpendicular along the edge of the pinning potential. After the potential has passed through, the vortex orbits in
a counter-clockwise circle direction due to boundary effects from the trap that can be quantitatively described in this sharp,
flat trap by placing an image vortex outside of the potential to cancel the tangential current at the boundary: this induces a
counter-clockwise super-flow vs in Eq. (1). The geometry of the right simulation is such that the potential carries the vortex
around almost the entire trap: This extended interaction allows the pinning potential to excite phonons in the system visible as
ripples in the circular trajectory.

questioned by [21] but addressed in [20], while a different
set of calculations using the local density approximation
suggests that pinning is attractive over a substantial re-
gion in the inner crust [18, 22]. Moreover, nearby vortices
and the Casimir effect can significantly polarize a nucleus
– an effect absent in simple cylindrical geometries – dra-
matically changing the nature of the nuclear pinning sites
and disrupting the regularity of the nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly-accurate asymmetric stationary states in full 3D
are currently not feasible (requires a full diagonalization of
the single-particle Hamiltonian), but TDDFT algorithms
can be applied to the unconstrained 3D problem (requires
only applying the Hamiltonian) as has been demonstrated
in [24] and scale well to massively parallel supercomput-
ers for both cold atoms and nuclei. We now present a
qualitatively new approach for calculating vortex-pinning
interactions, unencumbered by the aforementioned issues,
utilizing only real-time dynamics.
The idea, similar to the Stern-Gerlach experiment, is

to observe how a vortex moves when approached by a
nucleus. To zeroth order, the sign of the interaction is

determined qualitatively by the direction of the motion
(Fig. 1); with a more careful inspection, one can extract
the force-separation relationship F (r) (Fig. 2).

We validate our procedure using a dynamical extended
Thomas-Fermi (ETF) model [25–28], equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic “dimers”
mB = 2m of fermionic pairs, with an equation of state
E(n) ∝ ξρ5/3 characterized by the Bertsch parameter
ξ ≈ 0.37 tuned to consistently fit both quantum Monte
Carlo (QMC) and experimental results [27]. Despite
the computational simplicity of the ETF model, it has
been demonstrated to quantitatively reproduce a range
of low-energy dynamics of both UFG experiments [26]
and fermionic density functional theory (DFT) simula-
tions [28]. The UFG should also qualitatively model
the dilute neutron superfluid in the crust of neutron
stars [5] due to the large neutron-neutron scattering length
ann ≈ −18.9 fm [29]. Thus, by using a physically moti-
vated model of the nuclear pairing potential [15], we
anticipate these ETF calculations to provide a fairly good
approximation of future fermionic TDDFT simulations.
To gain some intuition for the vortex-nucleus interac-

tion, consider the phenomenological Hall-Vinen-Iordanskii
(HVI) equation (see [30] for a discussion) for a vortex in
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2D:

M~̈rv − ~fqp = ρs~κ× (~̇rv − ~vs) + ~F v. (1)

Here ~rv is the position of the vortex, the force ~F v is per
unit length along the vortex, ρs is the number density of
the “background” superfluid, ~κ = 2π~ẑ is the quantized
vortex circulation, and ~vs is the “background” superfluid
velocity. This equation should only be taken as an intu-
itive guide since terms on the left-hand side are ill-defined.
The “mass of the vortex” M , for example, depends strongly
on the way it is measured [31], and the force ~fqp due to
excited phonons has significant memory effects.

For slowly accelerating vortices, the contribution from
the term proportional to ~̈rv is small. Furthermore, if
vortex and pinning site move sufficiently slowly, phonons
are not excited (~fqp = 0) and we can ignore the entire left
hand side of Eq. (1) [32]. This leaves the well-established
Magnus relationship ρs~κ× (~̇rv − ~vs) ≈ −~F v relating the
force ~F v applied to the vortex and its perpendicular ve-
locity ~̇rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the di-
rection and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid
density ρs and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpin(~rpin−~x), however, one can directly
and unambiguously calculate the force on the pinning
site:

~F pin = −
∫

d3x
∂Vpin(~rpin − ~x)

∂~rpin
ρ(~x). (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: 1) Eq. (2)
can be directly applied to a Coulomb potential (Vpin) that
couples to the proton charge-density (ρ) – this will be
the force that the vortex exerts on the nuclear lattice
– or, 2) one can estimate the force using Newton’s law
~F pin = mpin~apin for a dynamic pinning site comprising
protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center-
of-mass (CM) of the protons, and the effective mass mpin
can be estimated [33].

What remains is to prepare the initial conditions with
a vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N×N matrices (N = NxNyNz) which takes O(N3) oper-
ations. This is not feasible for realisticN ∼ 106, as each it-
eration would required a day of supercomputing wall time.
Instead, one can use adiabatic state preparation [34] which
takesO(N2 logN) operations. The idea is to adiabatically
evolve in real-time a state of some solvable system to a
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FIG. 2. (color online) Here we demonstrate consistency in dy-
namically extracting a vortex-pinning force. We use the nuclear
pairing potential [15] Vpin(r) = 0.75MeV/[1+exp(r/fm−7.5)]
at densities ρ ∼ 0.045 fm−3 ≈ 0.28ρsat. The triangular (blue)
points come from the computationally expensive “stationary”
method, while the solid (green) curve come from using the
“dynamic” real-time evolution analogous to that shown on the
left panel of Fig. 1. The dotted (red) curve shows the Magnus
estimate for the force (1) using a Thomas-Fermi approxima-
tion for ρs and estimating ~vs from the image vortex [36]. The
double curves come from the pinning site moving in then out.

desired initial state in the system of interest. For example,
starting with a non-interacting (Bose) gas trapped in a
harmonic potential VHO(r) = mBω

2r2/2, we can form ei-
ther the ground state ΨGS ∝ exp(−mBωr

2/2), or an exact
vortex “Landau level” Ψδ ∝ (x+ iy− δ) exp(−mBωr

2/2~)
(stationary in a rotating frame) with angular momentum
lz = N~/(1 +mBωδ

2/~) where δ is the displacement of
the vortex node from the centre of the harmonic trap.
From this exact non-interacting state we adiabatically
evolve the system to an interacting state in the desired
trapping potential Vtrap by simultaneously switching on
the interaction sξ and interpolating the trapping poten-
tials Vt = (1 − s)VHO + sVtrap where s = s(t/T ) is a
smooth C∞ switching function that goes from 0 to 1
over a characteristic time T chosen to be longer than any
intrinsic timescale in the system:

s

(
t

T

)
=

1

2
+

1

2
tanh

[
α tan

(
πt

T
− π

2

)]
= (3)

From ΨGS we can generate the ground state, and from
Ψδ=0 we can generate a single vortex in the centre of
the trap, both to high precision. The adiabatic state
preparation can be significantly accelerated by introducing
a “quantum friction” term to remove phonon noise [35].
With this combined approach, one can efficiently produce
almost any desired initial state with less than a day of
supercomputing wall time.
To accurately measure the vortex-pinning interaction



4

one can choose as a final potential VT = Vtrap + Vpin:
an axially symmetric trap of suitably flat bottom and a
pinning potential in the center. By generating a configura-
tion with a vortex orbiting in a circle at radius r, we can
use Eq. (2) to calculate the force exerted on the centrally
located pinning potential: axial symmetry ensures that
this is precisely the vortex-pinning force at separation
r. We use this procedure within the ETF model to ac-
curately calculate the “stationary” (in a rotating frame)
vortex-pinning interaction shown in Fig. 2.

The present demonstration has been limited to quasi-
2D simulations. The procedure will work just as well in
fully 3D simulations. New effects such as the bending
of a vortex line when approached by a pinning site can
just as easily be analyzed: the vortex line will either be
repelled by the pinning site – bowing out to avoid it – or
will be sucked in. We have considered here only moving
the pinning site, but one could also consider manipulating
parts of the vortex with pinning potentials, dragging the
pinned vortex along a trajectory instead. In simulations
with realistic nuclei, the vortex-nucleus interaction will
also excite and deform the nucleus – significantly affecting
the vortex-nucleus interaction. It is conceivable also that
a vortex lines could break and attach to various nuclear
defects like rods or plates: the dynamics of such broken
vortex lines may also play a important part in explaining
neutron star glitches.
We close with a brief analysis of the time-evolution.

The complex scalar field Ψ obeys an evolution equation
of the form

i~Ψ̇ =

(
−~2~∇2

2mB
+ Veff[Ψ ]

)
Ψ (4)

where Veff[Ψ ] is an effective interaction that depends non-
linearly on |Ψ | and on the external trapping and pinning
potentials. Consider the quasi–two-dimensional problem
where coordinates may be expressed as complex numbers
z = x+ iy: A singly-wound vortex at location zv may be
described by the field Ψ(z) = (z − zv)f(z), where f(z) is
a smooth complex-valued function that we assume has
no roots in the immediate vicinity of the vortex. The
evolution equations may then be expressed as follows

i~ḟ +
~2~∇2f

2mB
− Veff[Ψ ]f

=
i~żvf − ~2(∂xf + i∂yf)/mB

z − zv
. (5)

The left side is smooth, hence the pole on the right side
must cancel with a root in the numerator, giving us an
explicit expression for the vortex velocity

żv = [~̇rv]x + i[~̇rv]y = ~
−i∂xf + ∂yf

mBf

∣∣∣∣
z=zv

. (6)

This expression can be written as an exact “Magnus”
relation

~κ× (~̇rv − ~v) =
~2~∇ρ
2mBρ

∣∣∣∣∣
z=zv

(7)

where the local “superfluid velocity” ~v is

f =
√
ρeiφ, ~v = ~∇φ. (8)

The meaning of ρs in the HVI equations is not clarified
since ρ cancels in (7). Unfortunately, although ~v is pre-
cisely defined and corresponds to ~vs in some situations,
one cannot generally make the correspondence ~vs ≡ ~v. In
particular, doing so yields results that differ by as much
as 50% in Fig. 2.

The quantities appearing in Eq. (1) are related to long-
range momentum transfers and boundary effects, and one
must thus be content with reasonable estimates for ρs
and vs, for example, from the average behaviours of the
relevant quantities near but outside of the vortex core.
As Fig. 2 demonstrates, however, the Magnus relation
is suitable for extracting the sign and magnitude of the
interaction. This also provides an explicit check that the
force evaluated using our procedure is what appears on
the right side in Eq. (1) governing the vortex dynamics.

Conclusion: We have described how to use time-
dependent density functional theory (TDDFT) to effi-
ciently and unambiguously calculate vortex-pinning in-
teractions from real-time dynamical simulations of super-
fluid systems. We have demonstrated with an extended
Thomas-Fermi (ETF) model of the unitary Fermi gas
(UFG) that this approach can be applied to calculate
the vortex-nucleus interaction using nuclear TDDFTs to
model the crust of neutron stars. While we considered
only quasi-2D systems here, the size of the problem, the
magnitude and accuracy of the force extraction, and the
use of pure real-time dynamics ensure that full 3D simu-
lations of realistic fermionic TDDFTs is possible. With
available resources [24] one can simulate both finite and
infinite nuclear systems in simulation boxes of the order
of 803 fm−3 for up to 10−19 s. A resolution to the puzzle
of pulsar glitches will require more than just extracting
the vortex-nucleus interaction, but with this real-time
method, this crucial step will soon be within reach.

These techniques can also be directly applied to systems
of trapped ultra-cold atoms in a variety of geometries, for
example, to explore vortex pinning on optical lattices. In
particular, the close approximation of the neutron super-
fluid by the UFG suggests that cold atom experiments
might also be able to shed light on the glitching puzzle.
We thank S. Reddy and D. Thouless for useful discus-

sions. This work is supported, in part, by US grants
DE-FG02-97ER41014 and DE-FG02-00ER41132.
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