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The Hopf fibration is an example of a texture: a topologically stable, smooth, global configuration
of a field. Here we demonstrate the controlled sculpting of the Hopf fibration in nematic liquid
crystals through the control of point defects. We demonstrate how these are related to torons by
use of a topological visualization technique derived from the Pontryagin-Thom construction.

The combination of geometric order, optical response,
and soft elasticity of liquid crystals uniquely positions
them as an arena to study topology: boundary condi-
tions on sample walls can obstruct smooth solutions in
the bulk, forcing points, lines, and walls of diminished or-
der [1]. In general, these topological defects serve as tools
for probing the symmetries of the ground state manifold
(GSM) [2], as fundamental excitations [3], and as poten-
tial building blocks for self-assembly [4]. Does topology
only play a role in systems with singularities? Certainly
not, the Skyrmion in two and three dimensions is an ev-
erywhere smooth complexion of order that is, nonethe-
less, topologically protected [5, 6]. Similar non-singular
configurations are the origin, for instance, of gapless ex-
citations in the quantum hall effect and topological insu-
lators [7, 8]. In nematic liquid crystals, the GSM is the
projective plane RP 2 (the sphere with antipodal points
identified) and two- and three-dimensional Skyrmions are
labelled by elements of the second and third homotopy
groups, π2(RP 2) = Z and π3(RP 2) = Z, respectively.
The generator of the latter corresponds to the much-
storied “Hopf fibration” [9], an allowed texture in the
nematic phase [10, 11]. This celebrated configuration is
distinguished by its beautifully interwoven structure of
preimages: the set of all points in the material where
the orientation takes a particular value n̂ (Fig. 2b). The
preimage of every orientation is alike – a simple closed
circle in space – and the preimage of every pair of dis-
tinct orientations is a pair of linked circles, whose linking
number is the topological quantity (Hopf invariant) that
uniquely identifies the texture. Beyond this, the preim-
ages of of every orientation with a fixed z-component, nz,
fit together to fill the surface of a torus, while different
values of nz produce a family of nested tori that fill up
all of space.

In this Letter, we demonstrate our ability to con-
trollably generate the Hopf fibration experimentally in
cholesteric systems: nematics with a preferential hand-
edness, or twist. Our starting point is the toron con-
figuration depicted in Fig. 1 and described in detail in
[12]. This is a tube of double-twist that is wrapped upon
itself, its boundary forming a torus. Above and below

the “donut hole,” there are two point defects, both tak-
ing the form of hyperbolic hedgehogs. By manipulating
these two point defects we can create a defect free texture
with the topology of the Hopf fibration as in Fig. 2.

How do we know it is the Hopf fibration, and how does
the topology work out to render this result? We present
a representation of the three-dimensional topology of ne-
matics on a set of two-dimensional surfaces based on
the Pontryagin-Thom construction [13, 14] which we now
briefly sketch. This method is a three-dimensional gener-
alization of the use of crossed polarizers to study schlieren
textures in two-dimensional samples with the director
taking values in RP 1 [15] and has much of the flavor
of manipulating a complex function by moving its poles
and branch cuts around.

Recall that the dark lines in a schlieren texture mark
those regions where the director is along one of the two
polarizer directions. Continuity ensures that the dark
lines only end on point defects and topology ensures that
an even number of dark lines emanate from each point
defect. We can abstract this slightly by considering just
one of the polarizer directions, thus seeing only half the
dark lines; note that in either case, each line carries an
arbitrarily chosen yet globally consistent orientation so
that the lines point from positive to negative defects.

This two-dimensional construction has a natural gen-
eralization to three dimensions. We first pick a probe
direction p̂ ∈ RP 2. Next we draw the surface, Σp̂ ∈ R3,
on which the director is everywhere perpendicular to the
probe, p̂ · n̂ = 0. We are therefore looking at the preim-
age of a curve p̂⊥ in RP 2, the “equator” if p̂ were the
“North pole.” Were we to look for the preimage of p̂ we
would generically only get a curve and, more problemati-
cally, we could get the empty set for a nontrivial texture.
The surface construction, however, neatly generalizes the
two-dimensional case. The boundaries of any surface are
topological defects: a line boundary is the location of a
disclination line, carrying the Z2 charge associated with
π1(RP 2), while a point boundary, i.e. a hole in the sur-
face, carries a Z charge associated with π2(RP 2). To il-
lustrate, the surface Σẑ for a toron is shown in Fig. 1(c),
(d). It is the set of all points in the material where the
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FIG. 1: (a) Selected 3PEF-PM images from an image stack – the images are 16 µm wide and approximately 4 µm
apart in the z-direction. (b) the toron texture from [12]. The axis of symmetry of this structure is perpendicular to

the substrate. (c) top view, (d) side view: the “Pontryagin-Thom” surface constructed from this image stack.
Despite the considerable noise, the robustness of this method allows us to recognize the nontrivial topology of the

texture as the winding bands of color meeting at the two hedgehog defects on top and bottom.

director is perpendicular to ẑ and forms a surface that
connects the two point defects at the “top” and “bottom”
of the toron.

The surfaces, however, do not carry enough informa-
tion to determine the point charges. In order to cap-
ture this information, we must add an additional piece
of information to the surface, namely the direction of the
director in Σp̂. We represent this pictorially through a
color wheel, ranging from red to violet – through orange,
yellow, green, blue, and indigo – as the director rotates
by π. We pass through the color wheel a second time
if the director rotates by 2π, as it does, for instance,
in Σẑ for the standard radial hedgehog shown in Fig. 3.
In fact, since all point defects in a uniaxial nematic can
be oriented [23], the usual n̂ → −n̂ symmetry does not
come into play and the director always rotates through
the color wheel an even number of times, that is, by a
multiple of 2π. As a result, a point defect of charge
p ∈ π2(RP 2) will have a winding of 2pπ, or will cover the
color wheel 2p times, providing a unique identification of
point defects in nematics. Thus, looking at the toron in
Fig. 1(c), (d) again, the surface Σẑ is colored as described
and about each point defect there is a two-fold winding
of the full color wheel, identifying them as carrying unit
charge.

There is an important constraint on the colors that
may paint the preimage. The neighborhood of the preim-
age Σp̂ must admit a continuous map to the GSM [13]
and the neighborhood of p̂⊥ ∈ RP 2 is a Möbius strip M,

a line bundle over the equatorial circle. This means that
the normal vectors to points in Σp̂ are mapped continu-
ously to points of M lying “above” the points of the base
circle. Since one turn through the color wheel is half a
trip through M, the image of the surface normal on any
path in Σp̂ whose image in RP 2 wraps the equator once
will reverse sign. This extra structure forces every closed
curve on Σp̂ to have an even color winding so that the
image of the surface normal in M can be continuous.

Finally, it can be shown that this representation is
faithful, that is, up to continuous deformations (homo-
topy), no information is lost and the original texture can
be reconstructed from the representation we present here
[14]. To be more precise, homotopies of the original three-
dimensional texture induce not only deformations of the
colored surfaces but also may cause the surfaces to merge
together along same-colored points or split off new ones
(mathematically such moves are called “bordisms”) and
vice versa. A key theoretical technique of this Letter is
thus exploiting this equivalence: complicated homotopies
of three-dimensional nematic configurations can be vi-
sualized by simply manipulating these two-dimensional
surfaces.

In the experiments, we used nematic LC ZLI 2806
doped with the chiral agent CB15 to obtain cholesteric
pitch P of interest according to the relationship concen-
tration of CB15 C = 1/(h ∗ P ), where h = 5.9 µm−1 is
the helical twisting power of the used combination of the
nematic host and chiral additive. The used cholesteric
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FIG. 2: (a) A simulation of a toron in which the point hedgehogs are replaced with disclination loops. (b) Flow lines
of the famous Hopf fibration. (c) The preimage surface of the Hopf fibration, which one can get from (a) by bringing
together the two disclination loops through the center of the spool. (d) An experimental image of the same texture.

mixture had P = 20µm to match the thickness of
the used capillary d so that d/P = 1. A rectangular
capillary with 20 × 200µm cross-section was treated
for vertical surface boundary conditions by infiltrating
it with a 0.1wt.% aqueous solution of a surfactant
[3-(trimethoxysilyl)propyl]octadecyldimethylammonium
chloride (DMOAP) and then evaporating the solution
by heating it to 90◦C and keeping it at this temperature
for about 30 min. The cholesteric mixture was then
heated to isotropic phase at 80◦C and infiltrated to
the capillary to avoid filling-induced defects. Various
twist-stabilized localized structures in an initially un-
wound frustrated cholesteric LC were formed through
the use of holographic optical tweezers (HOT) [16]
built around a spatial light modulator (SLM) and a
CW laser operating at 1064nm. Both of the structures
described here (torons and Hopf fibration) have an
axial symmetry axis which aligns perpendicular to the
substrates. Laser beams of power less than 50mW
were focused and spatially steered in 3D within the
sample. We have used 10X-100X microscope objectives
with numerical apertures ranging within NA=.1-1.4 for
optical generation.

Imaging of the samples utilized three-photon excitation
fluorescence polarizing microscopy (3PEF-PM) [17] inte-
grated with HOT into a single optical setup built around
the same inverted optical microscope IX-81 (Olympus).
The optical technique of 3PEF-PM [17] is non-invasive,
does not require dyes (since the detected fluorescence
comes from the LC molecules themeselves), and enables
the imaging of director fields in 3D. The non-linear three-
photon absorption process gives rise to a cos6 β orienta-
tional dependence of the fluorescence signal, where β is
the angle between the probing light’s linear polarization
and the director. The inherent z-resolution (along the
microscope’s optical axis) associated with the non-linear
process allows for optical sectioning and reconstruction
of 3D images of the director field. 3D 3PEF-PM images
for four linear polarizations are used to generate a repre-
sentation in Paraview [20].

Whereas schlieren textures in thin cells give di-
rectly the Pontryagin-Thom construction for (quasi-)two-
dimensional nematics, the analogous colored surfaces of
three-dimensional textures are not an automatic output
of any current imaging technique. These surfaces can
be extracted easily from knowledge of the director field,
which can in turn be obtained from confocal microscopy
[18, 19] or polarizing-mode nonlinear optical microscopies
such as 3PEF-PM, coherent anti-Stokes Raman scatter-
ing microscopy [21], and stimulated Raman scattering
microscopy [22]. To construct this surface, we take inten-
sity data from confocal slices, polarized at four different
angles π/4 apart in the xy plane (E2

0 , E
2
π/4, E

2
π/2, E

2
3π/4).

The Stokes parameters I,Q, and U are:

I =
1

2

(
E2

0 + E2
π/4 + E2

π/2 + E2
3π/4

)
, (1)

Q = E2
0 − E2

π/2, (2)

U = E2
π/4 − E

2
3π/4. (3)

Writing n̂ = [sin θ cosφ, sin θ sinφ, cos θ]T and taking the
electric field amplitude to simply be proportional to the
local electric anisotropy tensor we find that I ∝ J sinn θ
and Q/U = tan(2φ) where J is the amplitude of the sig-
nal. Here n is an exponent depending on the imaging
modality; n = 4 for the case of fluorescence confocal mi-
croscopy [18, 19], n = 6 for 3PEF-PM with fluorescence
detection without a polarizer [17], and n = 8 for coher-
ent anti-Stokes Raman scattering polarizing microscopy
with linearly polarized detection collinear with the po-
larization of excitation light. We then assume that we
can shift and normalize the calculated I from the data
so that it takes value from 0 to 1 and the nth root of
I gives us sin θ. The shift is justified in this case as we
expect that away from the toron the director is actually
normal to the top and bottom surfaces, along the surface
normal, and hence θ = 0 there. The angle φ then gives us
the angle of the polarization projected to the xy plane,
and we can reconstruct the director n̂ from θ and φ.

To go from this to the colored surface numerically, we
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(a) (b)

FIG. 3: (a) a schematic of a hedgehog/anti-hedgehog pair; far away the color is constant, and hence the
configuration is topologically trivial. Viewed from below, the handedness of both color wheels changes, illustrating
the global sign ambiguity. (b) the same pair of defects moved one on top of the other with the surface bent around.
We might think the two defects are of the same sign due to the color rotations if we did not have the surface normal

keeping track of the relation to the global base point.

reflect the director field so that it lies in the upper half of
the sphere, i.e. if cos θ < 0 we take n̂→ −n̂. Using Par-
aView [20] we then view the isocontour with nz close to
zero. Though one might want to take a slice with nz zero,
the non-orientability of the line field makes it difficult to
exclude the artificial “branch cuts” where any reconstruc-
tion assigns adjacent grid points to different branches of
n̂, for example when n̂ happens to be adjacent to a data
point of −n̂. The downside of our approach is that what
should be one surface at nz = 0 is actually two nearby
surfaces nz = ±ε. Note that all we pick out here are the
surfaces of (near) maximum I, so the sixth-root transfor-
mation we made above actually makes no difference; all
we need is the fact that the regions in the data where I
is maximum correspond to regions where the molecules
tend to lie in the xy plane.

We analyzed 3PEF-PM images of several chirally
doped nematic textures as described. A precise recon-
struction of the director field requires a careful analysis
of the optical properties of the material. However, this is
unnecessary to determine topological features, which are
independent of the fine details and depend only on the
coarse structure that is preserved under continuous defor-
mation. Thus even a highly approximate reconstruction
of the director will capture all of the topology correctly.

Using these tools we can robustly identify the topo-
logical nature of three-dimensional textures. Returning
first to the toron shown in Fig. 1, the surface Σẑ is a
“football”, a closed surface with just two points missing,
corresponding to the locations of the two point defects
and identified by winding singularities of the color. There
are no boundaries to the surface and hence no disclina-
tions. However, the point defects can open up into small
disclination loops [12] and the surface then looks like the
simulation of Fig. 2(a), where the boundary marks the
location of the disclination. In either form, with point
defects (Fig. 1(c), (d)) or disclinations (Fig. 2(a)), the
preimage of any orientation n̂ ∈ ẑ⊥ corresponds to a sin-
gle color on the surface (one line lifts to the vector n̂ and
the other to −n̂). Thus the preimage of any orientation
is a curve starting at one point defect and ending at the
other. This tells us immediately that the configuration

is not the Hopf fibration. To create the linking of preim-
ages that characterizes the Hopf fibration we may bring
the two ends together to form a closed loop. In doing
so the defects will cancel and the surface Σẑ close up
to form a torus, as shown in Fig. 2(c) (simulation) and
(d) (experiment). Again, the preimage of any orientation
n̂ ∈ ẑ⊥ corresponds to a single color on Σẑ. These are all
closed circles (one for the vector n̂ and the other for −n̂)
and it can be seen directly that each color links every
other once in exactly the manner that typifies the Hopf
fibration. Thus by bringing together the two disclination
loops through the center of the spool we have created a
degree-one Hopf fibration starting from the toron. Seeing
this move directly from the three-dimensional textures in
Fig. 1(b) and Fig. 2(b) is much more of a challenge.

Experimentally, the transition between the structures
can typically be induced by bringing the focused Gaus-
sian laser beam and “massaging” (=perturbing) the pe-
ripheral part of the toron containing the looped double-
twist cylinder but this can occasionally also happen spon-
taneously. Both structures can be generated from the
initial uniform homeotropic state by rapidly moving the
focused Gaussian beam along a circle of diameter com-
parable to that of the double-twist cylinder in the toron.

In closing, we note that this graphical representation
immediately makes clear a number of often subtle issues
in the description of defects in nematics [23]. First,
we can see how the relative charges of two defects de-
pends upon a base point: in this representation, a pos-
itive point defect will have a counter-clockwise-rotating
color wheel, while a negative point defect will have a
clockwise-rotating color wheel when we look from above.
Were we to look at the same surface from below, however,
the handedness of the rotations flip! This corresponds to
the global ambiguity in choosing charge associated with
the two choices of lifting RP 2 to S2. It follows that look-
ing at two pieces of surface in the vicinity of two defects
does not allow the calculation of their relative degree –
one surface must be used in order to consistently de-
termine the topological charge. Finally note that these
surfaces can end on disclination lines, just as the dark
brushes in the schlieren texture can end on disclination
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points in two-dimensions. Importantly, the construction
of a colored surface from any given liquid crystal texture
captures all of the topological information about the tex-
ture, and also permits the full director field to be recon-
structed, at least up to homotopy. In future work we will
use this method to visualize blue phases and other com-
plex textures. Generalizing to biaxial nematics is another
extension worth pursuing.

We acknowledge stimulating discussions with D.
Beller, F. Cohen, and R. Kusner. GPA, BGC, and RDK
were supported in part by NSF DMR05-47230 and a gift
from L.J. Bernstein. This research was supported in part
by the National Science Foundation under Grant No.
NSF PHY11-25915. GPA, BGC, RDK, and IIS thank
the KITP for their hospitality while this work was be-
ing prepared. BGC thanks the hospitality of the Boulder
School in Condensed Matter and Materials Physics where
some of this work was completed.
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