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We show how to numerically calculate several quantities that characterize topological order start-
ing from a microscopic fractional quantum Hall (FQH) Hamiltonian. To find the set of degenerate
ground states (GS), we employ the infinite density matrix renormalization group (iDMRG) method
based on the matrix-product state (MPS) representation of FQH states on an infinite cylinder. To
study localized quasiparticles of a chosen topological charge, we use pairs of degenerate GSs as
boundary conditions for the iDMRG. We then show that the wave function obtained on the infinite
cylinder geometry can be adapted to a torus of arbitrary modular parameter, which allows us to ex-
plicitly calculate the non-Abelian Berry connection associated with the modular T -transformation.
As a result, the quantum dimensions, topological spins, quasiparticle charges, chiral central charge,
and Hall viscosity of the phase can be obtained using data contained entirely in the entanglement
spectrum of an infinite cylinder.

Over the last decades several new kinds of phases have
been discovered which cannot be characterized by spon-
taneous symmetry breaking, but instead exhibit topolog-
ical order [1, 2]. A prominent example of a topological
ordered phase is the fractional quantum Hall (FQH) ef-
fect [3]. These systems support quasiparticles (QPs) with
exotic exchange statistics (i.e., they are neither fermions
nor bosons), and have been proposed as a platform for
a ‘topological’ quantum computer [4–7]. Exact diagonal-
ization (ED) numerics have played a decisive role in the
study of FQH phases [8–10], and many characteristics
of the topological order can be extracted directly from
the ground states (GSs) via their entanglement struc-
ture [11–16]. However, the exponential growth of the
Hilbert space as a function of particle number means
that ED is prohibitively expensive beyond ≈20 parti-
cles. While it is possible to obtain very accurate results
for some systems with a small correlation length, such
as the ν = 1/3 Coulomb state, more complicated sys-
tems (system with higher Landau level, hierarchy states,
or non-Abelian phases) are much harder to access and
finite size effects are much stronger.

In this paper we address the limitations of ED by
using the infinite density matrix renormalization group
(iDMRG) algorithm to obtain the matrix product state
(MPS) representation of the GSs of FQH Hamiltonians
on infinitely long cylinders with finite circumference L
(see Fig. 1). The space of MPSs has been shown to be
an exact and efficient representation of the model QH
states [17, 18]; iDMRG extends these results to non-
model states by variationally optimizing an MPS with
respect to a microscopic Hamiltonian [19]. For a sys-
tem of size Lx ×Ly, finite DMRG reduces the computa-
tional complexity from O(bLxLy ) via ED to O(LxLyb

Lx),
with b & 1; taking Ly → ∞ using infinite DMRG gives
O(bLx). Several groups have by now implemented finite
DMRG to simulate FQH Hamiltonians [20–25]. The in-
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FIG. 1. Single particle states ϕ(x, y) in the lowest Landau
level of an infinite cylinder. L is the circumference of the
cylinder and `B is the magnetic length.

finite cylinder geometry has several additional numerical
advantages, such as translation invariance both along and
around the cylinder, zero curvature effects [25], and the
absence of gapless edge excitations which slow down the
convergence. In contrast to the standard bipartition of
the torus [14, 26, 27], cutting the infinite cylinder gives
the entanglement spectrum of a single edge.

We demonstrate how to obtain various characteriz-
ing quantities of quantum Hall systems from microscopic
Hamiltonians using the iDMRG simulations. Like the
torus, the infinite cylinder has topologically degener-
ate ground states, which we systemically obtain in the
MPS representation using iDMRG. In addition to the
QP quantum dimensions da [11, 12, 28], we also show
how to extract their charges and topological spins, the
chiral central charge of the edge conformal field theory
(CFT), and the Hall viscosity of the bulk using only the
entanglement spectra. By forming domain walls between
pairs of degenerate GSs, we obtain the energy and MPS of
a localized QP of a chosen topological charge. We apply
the infinite cylinder technique to spin-polarized electrons
at filling ν = 1/3, 2/5 and 1/2.

Recently Cincio and Vidal [29] applied iDMRG to
a lattice Hamiltonian on a cylinder and extracted the
braiding statistics of the anyons (‘S’ and ‘T ’) using wave-
function overlaps [16]. In this work we employ iDMRG
to continuum FQH Hamiltonians and extract topological
information purely from the entanglement spectra.
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Model and method. We consider the cylinder geome-
try [30–32] with a coordinate x running around the cir-
cumference of length L, and y running along the infinite
length of the cylinder (see Fig. 1). The Landau gauge
A = `−2

B (−y, 0) conserves the x-momentum around the
cylinder. The orbitals in the first Landau level are

ϕn(x, y) =
e
iknx− 1

2`2
B

(y−kn`2B)2√
L`Bπ1/2

, kn =
2πn

L
, (1)

where n ∈ Z, with a density of one orbital per flux-
quanta. Because each orbital is localized at yn = kn`

2
B ,

we treat the system as a 1D chain. The most general
two-body interaction allowed by translational symmetry
can be specified by coefficients Vkm,

Ĥ =
∑
n

∑
k≥|m|

Vkmc
†
n+mc

†
n+kcn+m+kcn. (2)

If the interactions are local in real space, they will be
Gaussian localized with a range on the order of L/`B
in the chain representation. The Hamiltonian can be
parameterized by the set of ‘Haldane pseudopotentials’
Vm which can represent any rotationally and trans-
lationally invariant two-body interaction within a sin-
gle Landau level. For example, the hard core Hal-
dane pseudopotential V1 takes the form Vkm ∝ (k2 −
m2)e−

1
2 (2π`B/L)2(k2+m2)[30]. To represent Ĥ at some

fixed accuracy we must keep O(L2/`2B) terms in the
Hamiltonian.

For our numerical simulations, we use the iDMRG al-
gorithm [33] which is based on the MPS representation,

|Ψ〉 =
∑
{jn}

[
· · ·B[0]j0B[1]j1 · · ·

]
|. . . , j0, j1, . . .〉 , (3)

where B[n]jn are χ × χ matrices and |jn〉, jn ∈ {0, 1}
represent the occupancy at orbital n. Assuming the state
|Ψ〉 is translationally invariant with a unit cell of length
M , then we need only store M different tensors B[i] to
express the MPS, i.e., B[i] = B[i+M ]; at filling ν = p/q,
M must be a multiple of q. MPS have proven to be
extremely successful in the simulation of gapped, one-
dimensional systems because their GSs can be expressed
to very high accuracy by keeping a relatively small χ even
for infinite system size [34–37]. The iDMRG algorithm
proceeds by iteratively minimizing E = 〈Ψ|Ĥ|Ψ〉 within
the space of MPS. The χ needed to express the ground
state to a given accuracy grows exponentially with L; a
moderate bond dimension of χ = 3600 was sufficient for
the largest system considered here, which took under a
day. In the Supplementary material we address several
technical issues particular to QH iDMRG [38].

We incorporate both particle number and momentum
conservation in the MPS representation and iDMRG al-
gorithm [39], which assume an important role in the sub-
sequent analysis. The quantum numbers are defined to

FIG. 2. (Color online) (a) Entanglement entropy S of the ν =
2/5 state as a function of the circumference L, for a bipartition
into two half-infinite cylinders. The inset shows the estimated
TEE γ = L dS

dL
− S(L) converging to γ = 1

2
log 5 (green line)

for large L. (b) Estimate of the chiral central charge c/24,
the topological spin h of the e/5 QP, and the Hall viscosity as

expressed through the ‘shift,’ S =
8π`2B
~ν ηH [40]. Dashed lines

show expected hierarchy values of 2/24, 1/5, 4/16 respectively.
That h is identically correct is peculiar to abelian QPs.

be

Ĉ =
∑
n

Ĉn ≡
∑
n

(N̂n − ν) (particle number), (4a)

K̂ =
∑
n

K̂n ≡
∑
n

n(N̂n − ν) (momentum), (4b)

where N̂n is the number operator at site n.
The Schmidt states |α〉L/R of |Ψ〉 on bond n̄ form or-

thonormal bases for the sites to the left and right of the
bond, with corresponding Schmidt values λn̄;α. They
have a well defined particle number Cn̄;α representing the
total charge to the left of bond n̄. We will view C̄n̄ as
a diagonal matrix acting in the set of Schmidt states (as
for K̄). It will prove useful to define a ‘bond expectation
value,’ 〈Cn̄〉 ≡

∑
α λ

2
n̄;αCn̄;α , which gives the expected

value of the charge to the left of bond n̄ (as for K). The
Schmidt values and their quantum numbers, (λ, C̄, K̄)n̄,
constitute the ‘orbital entanglement spectrum’ (OES) of
the bond. The corresponding entanglement entropy is
defined as Sn̄ ≡ −

∑
α λ

2
n̄;α log λ2

n̄;α.
Topological order and QPs. We now recall some ba-

sic facts about topological order on a cylinder [41]. A
topologically ordered state with m QP types (labeled by
‘a’) has an m-fold GS degeneracy on an infinite cylinder.
The chiral CFT describing the edge contains m scaling
operators {φa} which insert a corresponding QP a near
the edge. The Hilbert space of the edge H can be decom-
posed into a direct sum of subspaces Ha that contain the
edge states with topological charge a. In addition, the
states of the low-lying OES are in one-to-one correspon-
dence with the states of the edge CFT [11, 13]. With
an entanglement cut running around the circumference
of the cylinder, we can choose a particular basis {|Ξa〉}
for the m-dimensional vector space of GSs such that the
low-lying part of the OES of |Ξa〉 contains states only in
Ha. As each |Ξa〉 contains fewer states in the low-energy



3

part of the OES than the full CFT, they have lower en-
tanglement entropy and are referred to as the ‘minimal
entanglement states’ (MESs) [16]. Translations permute
the MESs, so the OES of a state depends on the bond n̄
between adjacent orbitals where the cylinder is cut. Con-
sequently each bond n̄ is labeled by the sector a found in
its OES; we therefore denote the corresponding bond by
ā [42].

We now outline the procedure for finding the full set
of degenerate GSs using iDMRG. On an infinite cylinder
the MESs are energy eigenstates, possibly with a degen-
eracy split exponentially in L [29]. Furthermore, for QH
problems in a topological phase, initializing the iDMRG
using an orbital configuration ‘µ’ (for example, µ = 010
gives |· · · 010010 · · ·〉) should generate the set of distinct
MES after iDMRG optimization. For many QH states,
this is a consequence of MESs’ distinct quantum numbers
K, though we suspect the result is more general [38]. If
we find optimized energies such that Eµ1 < Eµ2 , then
the state derived from initial state µ2 is rejected. The
iDMRG is the numerical check that a given µ leads to
one of the m GSs.

The entanglement entropy of each MES |Ξa〉 scales
with the circumference as S ≈ sL − γa, where γa =
log
√∑

b d
2
b − log(da) are the topological entanglement

entropies (TEEs) and da are the quantum dimensions
of the QPs [11, 12, 28]. From the TEEs γa we can de-
termine if we have the complete set of MESs [29]. As
an example of an Abelian model (da = 1 for all a),
we consider ν = 2/5 filling for Haldane pseudopoten-
tials V3/V1 = 0.05, for which the seed |01010〉 and its
translates were numerically determined to provide the 5
MESs. This has been considered before in an ED study
with Coulomb interactions on a torus for circumferences
up to L = 18`B [14], from which it was difficult to deter-
mine γ accurately. We are able to go up to L = 23.5`B
and obtain the results shown in Fig. 2. The estimated
TEE is γ ≈ 0.83 (close to 1

2 log 5 ≈ 0.8047).

As an example which has a non-Abelian phase, we con-
sider the filling ν = 1/2 which contains both the gapless
composite Fermi liquid (CFL) phase and the gapped,
non-Abelian MR phase [41, 43]. Using a sum of Hal-
dane pseudopotentials V1 and V3, we tune between the
CFL (small V3/V1) and MR (intermediate V3/V1) phases.
We start the iDMRG either with the |0110〉 configura-
tion (which provides four states via translation) or |0101〉
(which provides two). We observe that in the suspected
CFL phase the energies of the two sectors are split,
while the MR phase is nearly 6-fold degenerate, as il-
lustrated in Fig. 3(a). Fixing a point in the MR phase,
the difference in the entanglement entropies of the MESs
is S0101 − S0110 ≈ 0.36, which implies that the S0101

state is associated with a non-Abelian particle of quan-
tum dimension 1.43 (close to that of the e/4 excitation:√

2 ≈ 1.41), as illustrated in Fig. 3(b). This supports the
non-Abelian nature of the state.
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FIG. 3. (a) The relative energy difference between states in
the 0110 and 0101 sectors at ν = 1/2 filling and L = 16`B ,
plot against the ratio of pseudopotential strengths V3/V1. At
small V3/V1, the energies E0110 > E0101 and hence there is
only a two-fold GS degeneracy (CFL phase), whereas at large
V3/V1 the energies are roughly equal which give rise to a six
fold GS degeneracy (MR phase). Inset shows the real-space
entanglement spectrum of the 0101 state plotted versus K.(b)
Fixing a point V3/V1 = 0.4 in the MR phase, we increase L
and measure the difference in entanglement entropies S0101−
S0110. The result is consistent with dσ =

√
2 for the e/4 QP.

. . . . . .

FIG. 4. (color online) (a) The MPS used to represent a QP
‘a’. (b) The charge density ρ(y) of the numerically optimized
QP with charge +e/3 (blue line) and −e/3 (green line) of the
ν = 1/3 state. The cylinder has circumference L = 16`B and
the potential approximates a dipolar r−3 interaction.

In the cylinder geometry, the QPs appear as domain
walls between the degenerate GSs. To generate a QP of
type a in the vicinity of y = 0, we use the B-matrices
of the identity MPS |Ξ1〉 for sites at y � 0 and the B-
matrices of |Ξa〉 for y � 0. In the vicinity of y = 0, we
insert a finite number of B-matrices which we numeri-
cally optimize. For efficiency we work with QPs of fixed
momentum K; the resulting QPs for the ν = 1/3 state
are illustrated in Fig. 4. To calculate the charge of the
particle we measure Qa = limε→0

∑
n e
−ε|n|Ĉn, where Ĉn

is the on-site charge operator defined in Eq. (4). The re-
sulting charge is in fact independent of the B-matrices
used to glue together the MPS; Qa can be calculated
exactly knowing only the OES of the infinite MPS |Ξa〉
using e2πiQa = e2πi(〈〈C〉〉−Cā), where 〈〈C〉〉 is the average
of 〈Cn̄〉 over all bonds n̄ in the MPS of |Ξa〉 [42]. This
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FIG. 5. (a) A torus with dimensions Lx × Ly. Taking the
modular parameter τ → τ + 1 generates a modular transform
‘T ’ of the torus, and acts on the set of GSs as a matrix UT .
(b) The wavefunction on the torus is represented by a periodic
MPS. The sites are labelled by n ∈ Z + Φx

2π
due the flux

threading in the x-direction.

expression is exact and reduces to the ‘pattern of zeros’
result in the limit of a thin cylinder [44].

Ground states on a torus and topological spin. Sev-
eral quantities of interest, such as the phase’s response
to flux insertion and modular transformations, are de-
fined on the torus geometry, so it is useful to convert the
cylinder MPS to a torus MPS. The torus is made by tak-
ing a cylinder of circumference Lx and identifying points
(x, y) to (x + τxLx, y + Ly), where τ = τx + iLy/Lx is
the modular parameter. We also allow fluxes Φx/y to
thread through the two cycles. For a suitable definition
of the NΦ = LxLy/2π`

2
B orbitals of the torus [38], we can

construct wavefunctions on the torus from those on the
infinite cylinder by taking a finite segment of the cylin-
der MPS and connecting the two edge auxiliary bonds
together to form a ring [29], as illustrated in Fig. 5(b).
There is no need to reoptimize the B-matrices near the
seam: locally the torus Hamiltonian is identical to that
of an infinite cylinder, and if Ly is greater than the corre-
lation length the periodic MPS will have the same local
correlations as the iMPS. The fluxes and modular param-
eter can be accounted for by inserting a diagonal matrix
G when connecting the two edge auxiliary bonds [38],

G = (−1)(Ne−1)C e−2πiτxK eiΦyC , (5)

where C and K are the conserved particle number and
momentum of the Schmidt states and Ne is the total par-
ticle number. The first factor enforces fermion statistics
of the orbitals, the second factor adds a 2πτx twist when
connecting the ends of a cylinder, and the final factor
arises from the flux Φy threaded through the y-direction.
Via this construction we obtain the set of MESs on a
torus |Ξa〉 for arbitrary τ and Φx/y. By adiabatically
varying these parameters, we obtain the associated Berry
phases characteristic of the topological order.

The Berry phase UT calculated as τx goes from 0 to
1 [45] corresponds to a ‘T -transformation’ of the torus
as shown in Fig. 5(a). UT is diagonal in the MES basis,

and we expect it to contain two contributions [Eq. (6a)].
First, when acting on |Ξa〉, T causes an anyonic flux a
to wind once around the x-cycle of the torus, generating
a phase ha − c

24 , where ha is the spin of a and c is the
chiral central charge of the edge theory. Second, shearing
the bulk introduces a phase due to the universal ‘Hall
viscosity’ η

H
of the fluid [40, 46]. UT can be calculated

exactly by making use of the torus MPS [Eq. (5)], and we
find that the result depends only on the infinite cylinder
OES [Eq. (6b)]. Equating the expected and exact results,
for fermions we find

UT ;ab = δab exp
[
2πi

(
ha −

c

24
− η

H

2π~
L2
x

)]
(6a)

= δab e
2πi

(
Kā−〈〈K−n̄C〉〉−ν/24− νL2

x
16π2`2

B

)
. (6b)

In Fig. 2(b), we use the ν = 2/5 OES obtained from
iDMRG to extract h, c and η

H
, and find good agreement

with the expected values for the Abelian hierarchy state
[47]. For the MR phase, we obtain excellent results for
the model Hamiltonian [38], but when using only the two-
body Vm, the measurement is highly sensitive to tunnel-
ing between the Pfaffian and anti-Pfaffian states present
at the sizes studied [48, 49].

Conclusions. In this paper we showed how to numeri-
cally calculate several quantities which characterize topo-
logical order starting from a microscopic FQH Hamilto-
nian. The approach consists of two key steps: (i) We find
the MPSs representation of a complete set of GSs using
an iDMRG algorithm. (ii) We derived expressions for the
QP charges, topological spins, chiral central charge, and
Hall viscosity of the phase from the MPS representation.
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Independently, Cincio and Vidal have developed a
similar technique for using DMRG to probe quasipar-
ticles [50]. Also Tu, Zhang and Qi reported a similar
method for extracting the topological spin from entan-
glement [51].
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