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Current sheet configurations in natural and laboratory plasmas are often accompanied with fi-
nite normal magnetic component that is known to stabilize the two-dimensional resistive tearing
instability in high Lundquist number regime. Recent MHD simulations indicate that the nonlinear
development of ballooning instability is able to induce the formation of X-lines and plasmoids in
a generalized Harris sheet with finite normal magnetic component in the high Lundquist number
regime where the linear two-dimensional resistive tearing mode is stable.

Plasmoid often refers to a finite two-dimensional (2D)
region of closed magnetic flux bounded by a separatrix
with a single X-point [1, 2]. An isolated magnetic island
in the downstream region of a Sweet-Parker current sheet
is also generally called a plasmoid (e.g. [2]). Plasmoids
are often found in natural and laboratory plasmas in as-
sociation with various eruptive processes, such as those
observed in solar corona, magnetosphere, and magnetic
fusion experiments. Plasmoid formation has been be-
lieved to be the origin of substorm onset [3], and recently
it has received renewed interests due to its potential roles
in the universal process of fast reconnection [4]. Charac-
teristically, a plasmoid could spontaneously form in the
current sheet region with a finite magnetic field compo-
nent Bn normal to the neutral sheet plane. However, it
has not always been clear how a plasmoid would spon-
taneously form without external driver in such a current
sheet configuration where no X-line pre-exists.

The formation of plasmoids has been mostly investi-
gated for the Earth’s magnetotail configuration in the
context of substorm onset problem [1–3, 5–8]. In those
studies the weakly 2D current sheet with finite Bn is used
to model the initial static equilibrium of near-Earth mag-
netotail plasma. The 2D configuration becomes unsta-
ble to two-dimensional tearing-like perturbations when
the plasma resistivity is sufficiently large. In its nonlin-
ear stage, the unstable 2D resistive mode alone, which
has been referred to by many as “2D tearing instability”
(e.g. [9–17]) and recently as “axial tail instability” [18, 19]
in the context of magnetotail plasma, can induce the for-
mation of X-line and plasmoid. In reality, however, mag-
netotail current sheets are often in regimes where the ef-
fective plasma resistivity is too weak for the onset of 2D
resistive tearing instability due to the strong stabiliza-
tion from Bn (e.g. [15]). It has remained an interesting
question how plasmoids would spontaneously form in the
weakly resistive current sheets where no X-line pre-exists
and the finite Bn is sufficient to stabilize 2D resistive
modes.

Our recent three dimensional (3D) MHD simulations
of plasmoid formation process in the current sheet with
finite Bn and weak resistivity have shown significant dif-
ference from 2D simulations due to the 3D effects. In

particular, the inclusion of the spatial variation in the
equilibrium current direction (which is y direction in the
Cartesian coordinates defined later) allows the presence
of ballooning instability (e.g. [20–22]), which has demon-
strated its critical roles in the plasmoid formation process
in the higher Lundquist number regimes where the lin-
ear 2D resistive modes of the current sheet are stable. In
those regimes the thin current sheet with finite Bn is sus-
ceptible to finite-ky ballooning instability whose growth
time scale is sub-Alfvénic. Here ky is the wavenumber in
the y direction. The nonlinear ballooning growth tends
to stretch the current sheet and reduce Bn. As a conse-
quence, magnetic X-points appear and plasmoids start to
form. All ky components, including the ky = 0 compo-
nent, contribute to the nonlinear ballooning growth that
leads to the formation of plasmoids. These simulation
results suggest a new mechanism for plasmoid formation
in the current sheet with finite Bn in the high Lundquist
number regimes. We briefly report and discuss these find-
ings in this Letter.

We consider a generalized Harris sheet configuration
in Cartesian coordinates (x, y, z) where B0(x, z) = ey ×

∇Ψ(x, z), Ψ(x, z) = −λ ln
cosh

[
F (x)

z

λ

]
F (x)

, and lnF (x) =

−
∫
B0z(x, 0)dx/λ. Here λ is the current sheet width, ey

the unit vector in y direction, and all other symbols are
conventional. The profile of Bn = B0z(x, 0) has a mini-
mum region along x axis (Fig. 1). Such a configuration
was previously used to model the near-Earth magneto-
tail [19, 23]. Unlike the conventional Harris sheet where
Bn and the magnetic curvature are zero everywhere, the
generalized Harris sheet equilibrium shown in Fig. 1 has
regions of unfavorable magnetic curvature mostly around
z = 0 due to the presence of finite Bn. Hence the gen-
eralized Harris sheet is susceptible to ballooning insta-
bility. Global simulations have identified signatures of
both ballooning instability and axial tail instability near
the minimum Bn region along x axis [18, 24], and recent
MHD analysis indicates that such a configuration is in-
deed unstable to the axial tail instability but only in the
low Lundquist number regime (S <∼ 103) [19].

To further investigate the stability of the configuration
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FIG. 1: B0z(x, 0) profile (left) and magnetic field lines (right)
for the generalized Harris sheet equilibrium considered in this
Letter.

in higher Lundquist number regime, a full set of resistive
MHD equations are solved in 3D domain as an initial-
boundary value problem

∂ρ

∂t
+∇ · (ρu) = 0 (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= J×B−∇p+ µ∇ · (ρw) (2)

∂p

∂t
+ u · ∇p = −γp∇ · u (3)

∂B

∂t
= −∇×E (4)

E = −u×B + ηJ (5)

µ0J = ∇×B (6)

where ρ is the mass density, u the plasma flow velocity,
p the pressure, E is the electric field, B is the magnetic
field, J the current density, J = |J|, the adiabatic index
γ = 5/3, and w = ∇u+(∇u)T− 2

3I∇·u. In a weakly col-
lisional or collisionless plasma both resistivity η and vis-
cosity µ are small in absence of anomalous sources. The
above set of equations have been implemented in both
the linearized and the fully nonlinear version in the NIM-
ROD code [25] used in our computation. A solid, no-slip
wall boundary condition has been imposed on the sides
of the computation domain in both x and z directions, so
that any potential influence from an external inward flow
can be excluded. The boundary condition in the y direc-
tion is periodic. The spatial and temporal variables are
normalized with the equilibrium scale length (e.g. Earth
radius) and the Alfvénic time τA, respectively.

Linear calculation indicates that the current sheet con-
figuration shown in Fig. 1 is unstable to the 2D resistive
tearing or axial tail instability (ky = 0) in the lower
Lundquist number regime (S <∼ 103). The inclusion of
spatial variation in the y direction significantly enhances
the linear growth, particularly in the higher S regime
when the zero-ky 2D resistive tearing or axial tail mode is
stable (Fig. 2). The enhanced linear growth of the finite-
ky instability remains effective and becomes more rele-
vant in the more realistic collisionality regime (S >∼ 106),
thus making the instability a viable mechanism for ex-
plaining the faster sub-Alfvénic time scale of the current
sheet evolution in situations where the sources for large

anomalous resistivity are not available.
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FIG. 2: Linear growth rate as function of the wavelength in
y direction for different Lundquist number (S) regimes. The
magnetic Prandtl number Pm ≡ µ/η = 1 for all cases.

We now consider the nonlinear plasmoid formation
process in the same current sheet configuration in a
less resistive regime S = 104 where the 2D resistive
tearing mode is linearly stable and a plasmoid cannot
spontaneously form internally from a purely 2D process
(ky = 0). However, the inclusion of the 3D effects leads
to an entirely new scenario where the plasmoid formation
can be nonlinearly driven by a finite-ky ballooning insta-
bility. To demonstrate such a scenario, we report results
from a representative numerical case where the simula-
tion is initialized with small magnetic perturbation whose
magnitude is about one tenth of the minimum Bn. The
initial perturbation is monochromatic in the y direction
with a wavelength of 10. A finite element mesh of 64×64
with a polynomial degree of 5 in each direction is used
for the x− z domain. In the y direction, 32 Fourier col-
location points are used to resolve Fourier components
in the range of 0 ≤ kyLy/2π ≤ 10, where Ly = 100 is
the domain size in y. The perturbation quickly settles
into a linearly growing ballooning instability first, and
subsequently drives the growth of the ky = 0 component
through nonlinear coupling (Fig. 3). The entire nonlinear
evolution is dominated by the high ky (kyLy/2π = 10)
component. A natural consequence of the nonlinear bal-
looning drive is the formation of plasmoids within the
x− z plane.

To illustrate the plasmoid formation process, we track
the evolutions of the pressure contour in the z = 0 plane
and the magnetic field lines crossing a set of fixed points
along an x axis (y = −90, z = 0) (Fig. 4). The first
stage of nonlinear evolution, as represented by the plot
at t = 180 (the upper left panel in Fig. 4), is dominated
by the growing ballooning finger-like structures in the
z = 0 plane extending in the x direction. The magnetic
field lines are mostly frozen-in to the plasma and they
move along with the extending fingers, which results in
a stretching and thinning of the current sheet. The re-
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FIG. 3: Kinetic energy growth of the ky = 0 (black line) and
ky = 0.2π (red line) components of the nonlinear perturba-
tion.

duction of the normal component Bn in the z = 0 plane
appears to be the most in extent near the moving fronts
of the extending fingers, as evidenced by the formation of
a plasmoid in one of those locations around x = 13.5 at
t = 190 (the upper right panel in Fig. 4). The plasmoid
continues to grow in size and move in the positive x di-
rection, even when the finger length in pressure contour
has started to decrease as the amplitude of the ballooning
instability has reached saturation since the time t ' 190.

In addition to the formation of plasmoid in close asso-
ciation with the extruding fronts of nonlinear ballooning
fingers, other plasmoids have also formed in the wakes
of those ballooning finger fronts (Fig. 4). Almost in par-
allel to the course of the plasmoid formation described
in the previous paragraph, a second plasmoid starts to
form since the beginning of the nonlinear ballooning sat-
uration phase around t = 190 and becomes visible by
t = 200 to t = 210 on those magnetic field lines crossing
the z = 0 plane in the region around x ' 9.5 (the two
middle row panels in Fig. 4). This second plasmoid how-
ever appears to be rather transient. When t = 220 the
plasmoid located near x ' 9.5 disappears along with a
dipolarization of magnetic field in that region (the lower
left panel in Fig. 4). From that time, the field lines cross-
ing the z = 0 plane in the x ' 11 region have started to
stretch in the positive x direction, which eventually leads
to the formation of a third plasmoid in that region by the
time t = 260 (the lower right panel in Fig. 4).

Unlike in 2D simulations, the above 3D plasmoid for-
mation process is different for different locations along y
direction. For example, for a different set of field lines
crossing the x axis at y = −95, z = 0, there is no plas-
moid structure at t = 260 (the right panel in Fig. 5).
Similarly at an earlier time t = 200, the plasmoid asso-
ciated with the ballooning finger front at x = 14 on the
y = −90, z = 0 axis (as shown in the middle left panel
in Fig. 4) does not exist on these field lines crossing the
y = −95, z = 0 axis; only near x = 9.5 a plasmoid struc-
ture remains with a slightly different shape (the left panel

in Fig. 5). The variation of the plasmoid presence and
appearance in the y direction strongly indicates that the
plasmoid formation reported here is an intrinsically 3D
process that is qualitatively different from the 2D pro-
cess.

In summary, we demonstrated in simulations that non-
linear ballooning instability can effectively enable the for-
mation of plasmoids in a current sheet with finite nor-
mal component in the higher Lundquist number regime
where the 2D resistive tearing or axial tail mode is stabi-
lized by the finite Bn. Our results are not limited to the
specific current sheet model shown in Fig. 1 or the par-
ticular numerical settings. The scenario obtained here
persists in our simulations based on the more realistic
current sheet profiles that are continuous at any differ-
ential order, and in simulations with higher resolutions
as well as non-monochromatic initial perturbations. We
plan to report those additional simulation results else-
where. Recent 2D and 3D kinetic simulations have also
found that plasmoids can form in magnetotail configura-
tions and regimes where the 2D resistive tearing mode
itself would be stable [26–28]. The quantification of the
full range of configuration and parameter space for the
reported plasmoid formation mechanism, and the com-
parison between the MHD and kinetic simulation results
will be subjects of future studies.
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