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Abstract: 

A nonlinear parallel force can be exerted through the inhomogeneity of rf resonant absorption in a 

magnetized plasma. While providing no integrated force over a plasma volume, this force can 

redistribute momentum parallel to the magnetic field. Because flows and currents parallel to the 

magnetic field encounter different resistances, this redistribution can play a large role, in addition to 

the role played by the direct absorption of parallel momentum. For nearly perpendicular 

propagating waves in a tokamak plasma, this additional force is expected to affect significantly the 

toroidal rf-driven current and the toroidal flow drive. 
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Toroidal current and flow play key roles in confining and stabilizing magnetized plasma in 

tokamaks. The use of rf power to drive plasma current and flow is, therefore, of great interest. To 

optimize the steady-state operation of high-performance plasma, it remains vital to increase the 

drive efficiency and to improve the precision of rf-driven current and flow profiles.  

When the injected rf power is absorbed in the plasma, the amplitudes of rf fields decay in space. 

The inhomogeneous field exerts the well-known ponderomotive force [1] in the direction of the 

inhomogeneity. However, in the symmetric directions, for example, inside the flux surface of torus, 

the nonresonant forces vanish upon flux-surface averaging [2,3]. In particular, the parallel force, 

along the background magnetic field, is resonant (i.e. dissipative) locally [4]. The parallel current 

and flow is, therefore, unlikely to be driven with high efficiency through nonresonant mechanisms. 

There do remain possibilities for high efficiencies within the resonant mechanism. One is the 

rearranging of phase space. If a gradient in the ponderomotive potential is introduced in the 

direction of the current, the current drive arises from rearranging particle phase space through the 

Maxwell demon-like effects [5-9]. These ratchet-type effects can be quite efficient compared to the 

traditional current-drive mechanisms [10]. However, a sharply inhomogeneous, parallel magnetic 

field is required, which is difficult to produce in a torus. Another idea is the rearranging the absorbed 

momentum in real space through the stress. The dissipative stress can introduce a poloidal resonant 

force even when the poloidal momentum of waves vanishes [11, 12]. The poloidal force arises, 

because, due to the gyro-motion, the poloidal perturbed motion is dominated by the radial wave 

field, and vice versa [13]. Then the quasi-linear stress in the perpendicular surface is proportional to 

the perpendicular power absorption. Thus the inhomogeneity of power absorption induces a 

poloidal force. This mechanism works even in cold plasmas; however, it obviously cannot be 

applied to the parallel force. A new mechanism will be required to enhance the parallel current or 

flow drive. 

Here, we show that, because of the nonlinear stress in thermal plasmas, a parallel rf force can 

be driven through the inhomogeneity of resonant absorption. The poloidal rf momentum injection is 

necessary to generate this force; therefore, for nearly perpendicular propagating waves, the total 

parallel rf force is expected to be significantly enhanced over the direct drive force (DDF) which 

corresponds to the parallel momentum absorption rate. Fine control of parallel current and flow is 

important in tokamaks, since precise profiles of current and flow usually determine the plasma 



3 
 

stability. Waves are often introduced in a narrow absorption layer, which maximizes the 

ponderomotive effect. The parallel rf force driven by the inhomogeneity of resonant absorption 

uncovered here, therefore, may be particularly important in shaping correctly these profiles. 

The basic idea of driving the parallel rf force through the inhomogeneity of the resonant 

absorption is as follows. The inhomogeneous transport of parallel momentum generates a 

distributed parallel force without providing an integrated force over a plasma volume. Since the 

parallel momentum is orthogonal to the gyro-motion, the Reynolds-type stress with two first-order 

fluctuating velocities cannot contribute to the transport of parallel momentum after gyro-averaging. 

However, a second-order slowly-varying radial drift velocity (we may call it “the transporter”) can 

transport the zero-order parallel momentum (we may call it “the passenger”) as well. Considering a 

symmetric Maxwell distribution, the actual “passenger” is only the resonant absorbed parallel 

momentum, whose direction is decided by that of the wave. Meanwhile, to generate a “qualified 

transporter”, i.e. an inhomogeneous radial drift, poloidal rf momentum absorption is necessary, 

which is due to the resonant mechanism as well. Thus, this kind of force depends on the resonant 

absorption of rf waves. 

In the following, this parallel rf force driven by the inhomogeneity of resonant absorption will 

be derived. The rf force on a plasma fluid element is calculated based on the force on a single 

particle and averaging over the velocity distribution. This approach is helpful to clarify the physics 

of this additional force. The same general approach has been helpful in explaining the physics 

mechanism of collisionless damping [14] or in clearing up the dispute on nonresonant current drive 

[4].  

First, we show that this parallel rf force due to inhomogeneity of resonant absorption does 

NOT appear in the force on single particle. Assuming a constant magnetic field zB ˆ00 B= , wave 

field ( ) ( )rkEE ⋅+−= itix ωexpˆ
11 , and a spatially-constant unperturbed velocity 0v  (which 

implies finite temperature), then the perturbed velocity 1v  and displacement 1r  can be solved 

from the motion equation of single particle. For simplicity, 1=q  and 1=m  are used and then the 

power absorption of a single particle is 

( ) 11011 ErvEv ∇⋅⋅+⋅=spw ,           (1) 
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Here the nonlinear product of two oscillating quantities AB  indicates the abbreviation of 

2*Re BABA =  unless otherwise specified, where ⋅  
means averaging over the period of 

wave field, and the eikonal approximation 111 EkEE Ei ∇+=∇  is used, where E∇  means the 

gradient operator only on the amplitude of fields. Then the nonlinear rf force on a single particle can 

be written as  

fsp = kwsp ω + fpond .                                (2) 

Here, the first term is the resonant momentum absorption rate, which is along the direction of wave 

propagation; the second is the ponderomotive force, ( )ωspEpond wIm−∇=f , which is 

nonresonant, but along the direction of the gradient of wave fields. Clearly, unless the asymmetry 

along the field is specifically built-in [5, 6], there is no parallel force due to the inhomogeneity of 

wave fields within the single particle picture.  

 Now let us analyze the force on a fluid element. Neglecting the second-order spatial derivatives 

of second-order quantities. i.e. the ( )2∇O  terms, the rf force density on a fluid element can be 

written as [3] 

Ff n0 = fsp − ∇ ⋅ r1 E1 + v0 × B1( ) + v0v2 + v1v1 + v2v0
⎡⎣ ⎤⎦,       (3) 

where v2  is a second-order quantity, which is averaged over the period of wave and therefore 

slowly varying in time and space. Besides the force on individual particles, the fluid element 

encounters force from surface stress, including the polarization stress r1 E1 + v0 × B1( ), Reynolds 

stress v1v1, and the nonlinear stress v0v2 + v2v0  which describes the transport of second-order 

momentum by a zero-order flux and of zero-order momentum by a second-order slowly-varying 

flux. Using the single particle motion equation, we have 

( ) ( ) 0111111101 BvrvrvvBvEr1 ×−=+×+ td . When 00 =v , 11vr  is a pure oscillating term, and 

then Ff n0 = fsp + ∇⋅ r1v1 × B0[ ] . The force reduces to that in the cold fluid limit [3], where the 

surface force exists only perpendicularly. Therefore, the enhanced parallel rf force, due to 

inhomogeneity of the resonant absorption, only appears in thermal plasma, i.e. with finite 0v . 
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To proceed, we need integrate the force in Eq. (3) over unperturbed velocity 0v  for Maxwell 

distribution with consideration of the behavior at steady status, so only the resonant terms with the 

form of ( ) ωωtsin  remains. One can then get the averaged parallel force on a fluid element. To 

simplify the analysis, we assume zv ˆ00 zv=  so that finite Larmor radius effects are neglected. 

Since the inhomogeneity is only in the x-direction, the parallel component of Eq. (3) simplifies to 

Ffz n0 = kzwsp ω −∂xdt x1v1z( ) −∂x v2 xv0 z( )  
.                         (4) 

Here, the first term is the parallel momentum absorption rate by individual particles, which is 

proportional to the power absorption of single particle, 

 
(5) 

where zzcl vkl 0−−= ωωω , 222
yx kkk +=⊥  and yx iEEE ±=± . Here, cw  is the cyclotron 

damping with lowest order (due to the neglecting of perpendicular temperature), which includes 

X-mode damping, O-mode damping and their mixture, corresponding to three terms in the braces, 

respectively; Lw  is Landau damping; and aw  is the work of the electric field variation due to 

instantaneous vertical displacement, which appears at finite yk  and finite zv0  and therefore is not 

shown in previous similar derivations [14]. The second term in the RHS of Eq.  (4) comes from the 

polarization stress and Reynolds stress, whose effective component is just ωazwk2− , and the 

third term comes from the nonlinear stress, where the nonlinear radial drift velocity is driven by the 

poloidal rf force, i.e. ( )Ω=Ω= ωspyspx wkfv y2 . Thus, Eq. (4) is rewritten as  

Ffz

n0

= kz

ω
wc + wL − wa( ) −

kyv0 z

ωΩ
∂x wc + wL + wa( )

 
                      (6) 

It may seem that these two terms are somewhat inconsistent. This inconsistency arises from 

different definitions of electromagnetic forces (and, therefore, the energy/momentum absorption 

rates) in the pictures of single particle and fluid; but it can be eliminated after ensemble averaging. 

Multiplying Eq. (6) to the parallel equilibrium distribution function ( )zz vf 0  and integrating the 
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product, one can get the averaged parallel force on a fluid element, zfF . Before this, it is useful to 

introduce the power absorption density due to different mechanism, 

 Sc,L,a ≡ wc,L,a fz dv0 z−∞

+∞∫ = π
kz

wc,L,a fz v0 z=vl
res ,                        (7) 

where vl
res = ω − lΩ( ) kz  is the resonant velocity for 0=lω . Noted that 

kzwa ω + kyv0z∂xwL ωΩ( )⎡⎣ ⎤⎦ fz dvz−∞

+∞∫  ( )Ω∂= ωLx
res

y Svk 0  and, also, that ∂xwa  is a term of 

( )2∇O , which can be neglected. Then we get a perfect simplification that Sa  vanishes. Defining a 

new power absorption density S = Sc + SL , the parallel force zfF  is now rewritten in a more 

compact form,  

Ffz = kz

ω
S −

kyvl
res

ωΩ
∂xS .                                      (8) 

where =l 0 and 1± , corresponding to different terms in S , i. e. Landau damping term or R/L 

wave cyclotron damping terms. In fact, S  has a more clear physical meaning than the power 

absorption defined from the single particle, spw . It includes Landau damping and cyclotron 

damping, but excludes the contribution from the aw .  It is just the local power absorption density 

by a mass of plasma. The following analysis from the kinetic theory indicates this point. 

 The derivation within the kinetic theory is rather direct. The time averaging of the second-order 

distribution function can be obtained as [11, 12] 

f2 = − lim
γ→0

dt 'eγ t '−t( ) E1 '+ v '× B1( ) ⋅∂v ' f1 r ', v ', t '( )
0

t∫            (9) 

Here, 2f  consists of two parts: )(
2

af  is the divergence in velocity space and )(
2

bf  is the 

divergence in real space, i.e. 2
)(

22 ndfdf b == ∫∫ vv . Excluding the power flux into or out of the 

volume element due to the density variation, the local power absorption density in the kinetic theory 

is defined as S = v2 2( )∂t f2
(a)∫ dv . After a complicated calculation we get 

S = dkR dkLei(kR−kL )x Wll∑∫∫ ,                       (10) 

where LRk ,  are the radial wave numbers of two interacting wave fields and 

Wl = eil (θR−θL ) dv f0 −iωlT( )⎡⎣ ⎤⎦ Hl ⋅ ER( ) Hl ⋅ EL( )∫  
with  and 
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( )yLRLR kk ,
1

, tan−=θ  . Once 2f  is solved, one can easily get the nonlinear rf force. Its parallel 

component, vdfvF ztkz ∫∂= 2 , is    

Fkz = kz

ω
S −∂x dkR dkLei(kR−kL )x kyvl

res

ωΩ
Wl

l
∑∫∫

⎡

⎣
⎢

⎤

⎦
⎥               (11) 

Comparing Eq. (11) with Eq. (8), which is from the particle-fluid picture, they are almost the 

same except for high-order cyclotron damping retained in Eq. (11). It implies that the assumption of 

zero perpendicular temperature does not alter the physics that interests. Therefore, the mechanism 

can be clarified from the particle-fluid picture. Poloidal momentum absorption drives a radial 

nonlinear drift flux. This flux is radially inhomogeneous, and, therefore, transport different parallel 

momentum fluxes into and out of the surface of the fluid element. Since only resonant particles feel 

the momentum absorption and nonlinear drift, only resonant absorbed parallel momentum is 

transported. Then, beside the DDF due to direct parallel momentum absorption, an additional 

parallel force is generated, which is resonant, but is related to the radial inhomogeneity of poloidal 

momentum absorption. Since this force is proportional to the gradient of the second-order field 

amplitude products (although not along the direction of the gradient), we may name it the resonant 

ponderomotive force (RPF). 

The RPF is a gradient force. If the rf waves are completely absorbed, the integral of the RPF 

over the whole plasma region is zero. Obviously, it has opposite signs on opposite sides of the 

strongest deposition layer. It enhances the parallel drive on one side; and has a weakening effect on 

the other side. However, since there are different collisionality and different background magnetic 

field at different radial positions, the driven current or flow cannot be canceled altogether. At the 

same time, the profiles of current and flow are shaped by the RPF as well.  

It is valuable to estimate the magnitude of the RPF. Assuming that the scale length of power 

deposition is rfL , the ratio of the RPF to the DDF is ( )trfz
res
lyDDFRPF vLkvkFF ρ= . It implies 

that for nearly perpendicular propagating wave the effect of the RPF might be significant.  

One example is the lower hybrid wave (LHW), where k⊥
2 kz

2 ~ mi me . As the LHW 

propagates into the plasma, k⊥  gradually turns from the radial direction to tangential direction. A 

recent calculation [15] shows that a very high poloidal wave vector is developed, which is more than 

ten times larger than the toroidal wave vector. This poloidal wave vector increases the parallel 
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refractive index; and generates a tangential momentum input as well. For the LHW, the resonant 

velocity res
lv  is several times of tev  (for example, 5.6=te

res
l vv  for 2|| =n  and keVTe 3= ) 

and the deposition layer is usually a fraction of minor radius (for example 3aLrf = ). Then, one 

can estimate ( ) avLkvk iterfz
res
ley ρρ 20~ . It indicates that the RPF may give a considerable 

correction to the DDF. Moreover, the signs of zy kk  and ∂xS  decide the sign of the effect. When 

the parallel force is enhanced in the inner region, the LHW-driven current may increase due to fewer 

collisions in the inner. While, when the force in the outer is enhanced, where there are more trapped 

electrons and a lower magnetic field, the flow drive due to the effect of resonant trapped electron 

pinch [16] is enhanced.  

It is noted that the RPF effect is influenced by the parallel wave number. Recalling that 

z
res
l kv ω~ , then ( )trfz

res
ly vLkvk ρ , is proportional to 2−

zk  for fixed yk and rfL . It means that 

the RPF effect is more significant for lower kz , or, in other words, it enhances the efficiency of fast 

electron current drive. The increase of total driven-current can be attributed to both the increase of 

the current drive efficiency and that of the absorption efficiency. The latter is usually explained by 

the so-called “spectral gap” or “spectral broadening” phenomena, which may be caused by the 

toroidicity effect [17], parametric decay [18] or other nonlinear effects. In practice, if one does not 

separate the increase of current drive efficiency from the increase of absorption efficiency, the RPF 

effect may appear to bridge the spectral gap as well. However, the evolution of parallel and 

tangential wave vector in toroidal geometry and its effect on power deposition should be considered 

in a more consistent study.  

Another kind of nearly perpendicular propagating wave is Bernstein wave. The effect of the 

RPF on the electron Bernstein wave (EBW) current drive is expected to be similar to the LHCD case, 

i.e. to provide a correction on the order of several to tens of Liρ . However, the effect might be 

significant for the ion Bernstein wave (IBW). The IBW has a large perpendicular wave vector 

1~ik ρ⊥  and a rather low parallel wave vector 1~ωzck . In fact, in the case of the 

mode-converted IBW the parallel wave vector actually vanishes as it flips sign [19]. Its resonant 

velocity res
lv  is on the order of tiv , and the thickness of the L-mode cyclotron resonance layer is 

about 0Rkziρ , where 0R  is the major radius. Then, one has ( ) ( )0
22~ RcvLkvk itipz

res
liy ρωρ , 

which is much larger than the unity in typical IBW experiments. Therefore, the force due to the 

inhomogeneity of rf resonant absorption, which is discovered in this letter, is expected to play a key 
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role in the scheme of IBW flow drive. Moreover, since the IBW is proposed as the carrier of power 

from fusion alpha particles to fuel ions through the so-called “alpha-channeling” effect [20-21], we 

expect that, besides its role in power transfer, the IBW can simultaneously drive a significant 

toroidal flow to meet the requirement of steady state operation in fusion devices. 

It is noted that here the inhomogeneity is assumed only in the x-direction. In toroidal geometry, 

however, there is poloidal asymmetry. Thus, even with the classical non-resonant ponderomotive 

force, the nonlinear drift in the poloidal direction may induce significant effect on the parallel force 

by a mechanism similar to that derived here. [22] 

In summary, the parallel rf force is examined from both the particle-fluid picture and kinetic 

theory, with special attention on the effect of the inhomogeneity of rf resonant absorption. The 

major conclusions include: (i) the local parallel force is completely resonant (i.e. dissipative), but it 

consists of two parts: one is the DDF due to parallel momentum absorption, the other is the RPF due 

to the radial inhomogeneity of poloidal momentum absorption, whose expression is shown in Eq. (8) 

or (11); (ii) the RPF is an actual nonlinear force in thermal plasmas, which originates from the 

transport of parallel momentum of resonant particles by the inhomogeneous nonlinear drift flux; (iii) 

the RPF enhances the total parallel driving force on one side of the layer of strongest deposition and 

weakens the total force on the other side. Although its integral over the plasma region vanishes, the 

RPF-driven current and flow cannot be altogether canceled due to different plasma responses in 

different positions and this redistribution can modify the profiles of current and flow as well; (iv) rf 

waves are usually employed to drive the current and flow in a narrow absorption layer, which 

maximizes the ponderomotive effect, therefore the RPF effects uncovered here may be particularly 

important in shaping the profiles of current and flow. Especially, for nearly perpendicular 

propagating waves, such as LHWs or Bernstein waves, the RPF effects are expected to be 

significant. 
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