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We show that supersymmetry can provide a versatile platform in synthesizing a new class of op-
tical structures with desired properties and functionalities. By exploiting the intimate relationship
between superpatners, one can systematically construct index potentials capable of exhibiting the
same scattering and guided wave characteristics. In particular, in the Helmholtz regime, we demon-
strate that one-dimensional supersymmetric pairs display identical reflectivities and transmittivities
for any angle of incidence. Optical SUSY is then extended to two-dimensional systems where a link
between specific azimuthal mode subsets is established. Finally we explore supersymmetric photonic
lattices where discreteness can be utilized to design lossless integrated mode filtering arrangements.
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Supersymmetry (SUSY) emerged within quantum field
theory as means to relate fermions and bosons [1–6].
In this mathematical framework, these seemingly very
different entities constitute superpartners and can be
treated on equal footing. Transitions between their re-
spective states require transformations between commut-
ing and anti-commuting coordinates–better known as
supersymmetries. The development of SUSY was also
meant to resolve questions left unanswered by the stan-
dard model [7], such as the origin of mass scales or the
nature of vacuum energy, and to ultimately link quan-
tum field theory with cosmology towards a Grand Unified
Theory. Moreover, SUSY has found numerous applica-
tions in random matrix theory and disordered systems
[12]. Even though the experimental validation of SUSY
is still an ongoing issue, some of its fundamental con-
cepts have been successfully adapted to non-relativistic
quantum mechanics (QM). Interestingly, in this context,
SUSY has led to new methods in relating Hamiltonians
with similar spectra. In this regard, it has been used to
identify new families of analytically solvable potentials
and to enable powerful approximation schemes [8–11].
Recently, SUSY schemes have been theoretically explored
in quantum cascade lasers [13] and ion-trap arrangements
[14]. Clearly of interest will be to identify other physical
settings where the rich structure of SUSY can be directly
observed and fruitfully utilized.

In quantum mechanics, SUSY establishes a relation-
ship between superpartners through the factorization of
an operator, i.e., L(1) = A†A, where † denotes the Her-
mitian adjoint. In this respect, the superpartner is de-
fined through L(2) = AA†, from where one finds that
AL(1) = AA†A = L(2)A and A†L(2) = A†AA† =
L(1)A†. It then follows that the two eigenvalue prob-
lems L(1,2)X(1,2) = Ω(1,2)X(1,2) yield identical spectra
Ω(1) = Ω(2). Moreover, the SUSY operators A† and
A pairwise transform the eigenfunctions of the respec-
tive potentials into one another: X(1) ∝ A†X(2) and
X(2) ∝ AX(1) [8]. In addition, supersymmetry demands
that A annihilates the ground state of L(1). Therefore

the corresponding eigenvalue is removed from the spec-
trum of L(2). If however A does not annihilate the ground
state of L(1), then the two operators share the exact same
spectrum (including the fundamental state), and SUSY
is said to be broken. In the language of superpotentials,
this may also be characterized through the Witten pa-
rameter [6, 8].

In this Letter we show that optics can provide a fer-
tile ground where the ramifications of SUSY can be ex-
plored and utilized to realize a new class of functional
structures with desired characteristics. In particular we
demonstrate that supersymmetry can establish perfect
phase matching conditions between a great number of
modes-an outstanding problem in optics. In this vein, we
illustrate the intriguing possibility for preferential mode-
filtering where the fundamental mode of a structure can
be selectively extracted. Moreover, in the Helmholtz
regime, SUSY endows two very different scatterers with
identical reflectivities and transmittivities irrespective of
the angle of incidence. Subsequently we extend the con-
cept of optical SUSY to two-dimensional (2D) settings
with cylindrical symmetry, as in optical fibers. We show
that a partner potential with a SUSY spectrum of radial
modes exists, offering the possibility for angular momen-
tum multiplexing. Finally, we investigate the implica-
tions of supersymmetry within the framework of finite
periodic structures and propose a versatile approach to
systematically design SUSY optical lattices.

To explore the consequences of supersymmetry in op-
tics, we consider optical wave propagation in an arbi-
trary one-dimensional refractive index distribution n(x).
Waves propagating in the xz-plane can always be de-
composed in their transverse electric (TE) and trans-
verse magnetic (TM) components. For TE waves the
field evolution is governed by the Helmholtz equation(
∂xx + ∂zz + k2

0n
2(x)

)
Ey(x, z) = 0. Modes propagating

in this system have the form Ey(x, z) = f(x)eiβz and sat-
isfy the following eigenvalue equation for the propagation
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constant β:

Hf(x) = −β2f(x), (1)

where H = − d2

dx2 − k2
0n

2(x) corresponds to the Hamil-
tonian operator in a Schrödinger equation. For a given
index profile n(1)(x), SUSY now provides a systematic
way for generating a superpartner n(2)(x). If the index
distribution n(1)(x) supports at least one bound state

f
(1)
1 (x) (the ground state) with a propagation eigenvalue

β
(1)
1 , SUSY can be established via H(1) +

(
β

(1)
1

)2

= A†A,

where A = +d/dx+W (x) and A† = −d/dx+W (x) are
defined in terms of a yet to be determined superpotential
W (x). The optical potential and its superpartner then
satisfy (

k0n
(1,2)(x)

)2

=
(
β

(1)
1

)2

−W 2 ±W ′. (2)

Taking into account that A†Af
(1)
1 = 0, one finds that

Af
(1)
1 = 0. Thus a valid solution for W can be obtained

from the logarithmic derivative of the node-free funda-
mental mode:

W (x) = − d

dx
ln
(
f

(1)
1 (x)

)
. (3)

Figure 1(a) depicts an arbitrary refractive index dis-
tribution supporting a set of six guided modes. Here
the maximum index contrast is 5 × 10−3 and the wave-
length used is 1µm. While Eqs. (1-3) are valid in the
Helmholtz regime, here we consider a low contrast struc-
ture that is experimentally feasible. For this example,
the SUSY partner (Fig. 1(b)) has been numerically cal-
culated from Eq. (2) through the corresponding super-
potential (Fig. 1(c)) that was obtained from Eq. (3). As
Fig. 1(a) clearly shows, the fundamental mode of n(1)
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FIG. 1. (Color online). (a) Exemplary refractive index land-
scape (grey area) and its six bound modes (vertical placement
indicates their respective eigenvalues). (b) SUSY partner and
its five modes. The operators A,A† transform the phase-
matched modes into each other. (c) Both index landscapes
can be constructed from the superpotential W and its slope
W ′.
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FIG. 2. (Color online). Beam propagation in a multimode
waveguide. (a) When isolated (before dashed line), and when
coupled to its lossy superpartner (after dashed line, losses:
α ≈ 0.4cm−1). Two more advanced stages of this same field
evolution in the coupled system are shown in (b,c).

lacks a partner in the eigenvalue spectrum of n(2), indi-
cating unbroken SUSY. On the other hand the second
state of n(1) is paired with the first mode of n(2) that
has exactly the same propagation constant in spite of
its different parity. In this way, all the modes of these
two superpartners can be perfectly phase-matched ex-
cept for the fundamental mode of n(1). Therefore SUSY
provides the only strategy we know of to achieve global
phase matching conditions, irrespective of how large the
number of modes is, in such multimode optical poten-
tials.
This latter feature can be exploited for mode filtering
applications. The idea is illustrated in Fig. 2(a) where
n(1) has the form of a step-index like waveguide that
supports three modes at λ = 1.5µm. The optical propa-
gation when this system is excited with an arbitrary in-
put beam, is depicted in the first propagation section of
this figure. In this range, the field evolution is seemingly
chaotic because of modal interference. Once however the
superpartner waveguide is put in proximity, all the modes
of n(1) (apart from the fundamental) are periodically cou-
pled between these two structures. Despite their par-
ity, coupling between the phase-matched modes occurs
through their evanescent tails. If for example the sec-
ond waveguide is made intentionally lossy, all the modes
of n(1) eventually disappear except the fundamental, as
shown in Figs. 2(b,c). Similarly, the fundamental mode
can be selectively amplified. This behavior could be po-
tentially useful in large mode area laser sources.
SUSY structures also exhibit identical scattering prop-

erties in terms of their reflectivities and transmittivities.
In this case, the radiation mode continua are related to
each other through the SUSY algebra. Let us consider
again the SUSY pair described by Eqs. (2). We also
assume that n(1) asymptotically approaches a constant
background value n∞ at x→ ±∞. For an angle of inci-
dence θ, the components of the incident wave vector are
kx = k0n∞ cos(θ) and kz = k0n∞ sin(θ). The SUSY for-
malism then relates the field reflection/transmission co-
efficients r(1,2) and t(1,2) associated with these two struc-
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FIG. 3. (Color online). Scattering properties of the SUSY
pair from Fig. 1; (a) logarithmic plot of the angle-dependent

reflectivities R(1,2) (the graphs have been offset for visibility),

and (b) Phase difference of the transmission coefficients t(1,2)

(inset: Schematic of the scattering configuration)

tures in the following way [15]:

r(2) = +
W∞ + ikx
W∞ − ikx

r(1), t(2) = −W∞ + ikx
W∞ − ikx

t(1), (4)

where W∞ =

√(
β

(1)
1

)2

− k2
0n

2
∞ represents the limit of

the superpotential at x→ +∞ as obtained from Eqs. (2).
Note that the argument of the square root is always a
non-negative quantity [16]. It follows that n(1,2) exhibit

identical reflectivities R(1) = R(2) =
∣∣r(1,2)

∣∣2 and trans-

mittivities T (1) = T (2) =
∣∣t(1,2)

∣∣2. Consequently, bar-
ring direct phase measurements, the two SUSY structures
would be indistinguishable at any angle of incidence. In-
terestingly, the phase difference between r(1) and r(2),
and between t(1) and t(2) for any given θ is solely deter-

mined by the propagation constant β
(1)
1 of the fundamen-

tal mode and the background refractive index n∞.
A schematic of a possible scattering arrangement is
depicted in Fig. 3. The angle-dependent reflec-
tion/transmission coefficients for the SUSY pair consid-
ered in Fig. 1(a,b) were evaluated by means of the differ-
ential transfer matrix method [17] when the background
refractive index is n∞ = 1.5. In accordance with our
previous discussion, the two structures display identical
reflectivities (Fig. 3(a)). The phase difference between
their respective transmission coefficients is also shown in
Fig. 3(b).
Having investigated SUSY in 1D optical systems, the
question naturally arises as to whether these concepts can
be extended to 2D structures. The answer is not particu-
larly obvious given that the aforementioned factorization
technique relies on 1D Hamiltonians [8]. In what fol-
lows, we show that this limitation can be overcome in
paraxial settings with cylindrical symmetry, as in weakly
guiding optical fibers. In this regard, let us consider the
radial refractive index profile n(r) = n∞ + ∆n(r) where
∆n� n∞. In this case, the slowly varying field envelope
U satisfies the paraxial equation(

− ∂2

∂η2
− 1

η

∂

∂η
− 1

η2

∂2

∂φ2
− V (η)

)
U = i

∂

∂ξ
U, (5)

where η = r/r0 is a normalized radial coordinate, r0 is an
arbitrary spatial scale, φ is the azimuthal angle and the
normalized axial coordinate is given by ξ = z/(2k0n∞r

2
0).

In this representation the optical potential reads V =
2n∞k

2
0r

2
0∆n. By expressing the mode U = eiµξei`φR(η)

in terms of its orbital angular momentum `, and after
using the radial transformation R = η−1/2u we reduce
Eq. (5) to a 1D form,(

− d2

dη2
− Veff(η)

)
u = −µu, (6)

with the effective potential Veff(η) = V (η) + 1/4−`2
η2 .

By designating the modes of Eq. (6) as u`m, having
azimuthal and radial mode numbers ` and m respec-
tively, one can then generate an effective partner poten-

tial V
(2)
eff (η) for a given effective potential V

(1)
eff (η). As

in the 1D case investigated before, these two potentials

are related via the fundamental mode u
(1)
`11 of the first

potential; V
(2)
eff = V

(1)
eff + 2 d2

dη2 ln
(
u

(1)
`11

)
. In the original

coordinate system, R
(1)
`11 = η−1/2u

(1)
`11, which yields the

following relation between the superpartner potentials:

V (2)(η) = V (1)(η) + 2
d2

dη2
ln

(
η

`21−`22+1

2 R
(1)
`11

)
. (7)

Note that in deriving the most general expression for
V (2) we have assumed a different azimuthal mode
number `2 for the partner potential. In other words,
a potential V (1) and its partner V (2), constructed for
a certain `1 and `2, will only be supersymmetric with

respect to the subsets R
(1)
`1m

and R
(2)
`2m

of their respective
radial modes (m = 1, 2, . . .). Note that the second term
in Eq. (7) may introduce a singularity at η = 0. Yet, this
can be alleviated through an appropriate choice of `1 and
`2. Near the origin (η � 1), the radial solutions R`m of
any well-behaved potential V (η) are proportional to η|`|

[15], and thus R`11(η) ∼ η|`1|. Therefore, Eq. (7) yields a
non-singular partner potential only if |`2| = |`1|+1. This
relation reveals an unexpected result; in cylindrically
symmetric settings, SUSY provides a link between sets
of modes with adjacent azimuthal numbers. Given
that V (1) vanishes at η → ∞ it then follows that [15]

R
(1)
`11 ∼

1√
η exp

(
−√µ`11η

)
, and hence V (2)(η) ∼ 1/η2 in

this same limit.
Figures 4(a,b) depict the field profiles of the modes

LP
(1,2)
`1,2m

= ei`1,2φR
(1,2)
`1,2m

(η) corresponding to the two

cylindrical superpartner index profiles in Figs. 4(c,d).
In this case, the original refractive index distribution is
taken to be ∆n(r) = δe−(r/r0)8 , where the core radius is
r0 = 30µm, the index contrast amounts to δ = 2× 10−3

and the background refractive index is n∞ = 1.5. At
a wavelength of 1.55µm, it supports a total of twelve
guided modes. Based on the lowest state with `1 = 1, a
partner potential for `2 = 2 was generated according to
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FIG. 4. (Color online). (a,b) Supersymmetric subsets of
bound states corresponding to the SUSY pair of cylindrically
symmetric index profiles (c,d) generated for azimuthal num-
bers `1 = 1 and `2 = 2. (e,f) Complete eigenvalue spectra
(effective refractive indices) of both potentials. The respec-
tive subsets of SUSY states are indicated by dashed frames.

Eq. (7) [see Fig. 4(d)]. Note that whereas SUSY holds
between the modes with `1 = 1 and `2 = 2, the rest of
the eigenvalues remain disjoint, as shown in Figs. 4(e,f).
By relating mode subsets of different azimuthal indices
in this 2D setting, SUSY offers the possibility for a fully
integrated realization of optical angular momentum
multiplexing [18].
We next consider SUSY in finite periodic arrangements.
For example, a lattice of N well-separated single-mode
waveguides is known to support a set of N bound
states or supermodes. In this array environment, the
fundamental state is again node-free and hence can be
readily used to generate a superpotential according to
Eqs. (2). The corresponding SUSY partner resembles
a lattice with N − 1 dissimilar channels located in the
gaps between the original waveguides (see [15]).
The coupled mode formalism provides an effective way
to describe wave evolution in photonic lattices within the
first band. The set of coupled differential equations [19]
for the modal field amplitudes a can be written in the
form Ha = λa, where H is now the discrete Hamiltonian
of the system. This discretization provides a powerful
approach for constructing SUSY pairs: The Hamil-
tonian can be directly factorized using the Cholesky
method [20]. The pair of isospectral Hamiltonians thus
obtained retains the tri-diagonal shape of H, i.e. the
SUSY partner represents again a photonic lattice with

nearest-neighbor coupling. Note that whereas both
Hamiltonians are N ×N matrices, SUSY is nevertheless
unbroken in the sense that the N th waveguide of lattice
2 is completely decoupled.
Even more importantly, the discrete formalism outlined

above relaxes the need for exactly controlling the refrac-
tive index landscape. In particular, the technological
difficulties associated with sharp index depressions
can be circumvented without any loss of functionality.
Indeed, the control of only two parameters is here
sufficient for the actual realization of SUSY optical
systems: The waveguide’s effective refractive index,
which determines the propagation constant, and their
separation, which relates to the coupling coefficient. A
sequence of SUSY potentials can be iteratively obtained
by discarding the respective isolated channels. Such a
SUSY “ladder” can facilitate a lossless decomposition
of any input beam into its modal constituents. A weak
coupling cL between such consecutive partner lattices,
as indicated in Fig. 5(a), does not perturb SUSY and
allows for an interaction only between states with equal
eigenvalues. Consequently, energy initially carried by
the kth supermode in the fundamental lattice can be
transported between all layers 1...k, but is rejected by
layer k + 1. The propagation dynamics arising from
the excitation of several supermodes in the fundamental
lattice are shown in Figs. 5(b-d) for such a SUSY ladder
based on a uniform array with N0 = 6 waveguides. The
condition of weak inter-layer coupling was assured by
setting cL to be 5% of the coupling C within the uniform
lattice.
In conclusion we have shown that SUSY partner systems
can be generated for any 1D refractive index landscape
supporting at least one bound state. Despite their
dissimilar shapes, SUSY structures can exhibit identical
reflectivities and transmittivities for arbitrary angles of
incidence. Subsequently the concept of optical SUSY
was extended to 2D settings with cylindrical symmetry.
In this case SUSY was established for sets of modes
exhibiting consecutive azimuthal indices. In the context
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FIG. 5. (Color online). (a) Schematic of a SUSY ladder with
N = 6 layers. Propagation dynamics when a supermode of
the original lattice is selectively excited. (b) k = 1 (fundamen-
tal state): Confined in the first layer; (c) k = 3: Penetrates
only the first 3 layers (d) k = 6: Moves freely across the entire
ladder
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of photonic lattices, SUSY manifests itself as a reduction
in the number of channels. This concept is general
and highlights the potential of SUSY for robust optical
filtering and signal processing applications.
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